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Problem 3.24:  We want to cool air from 150oC to 60oC, but we can’t afford a custom-

built heat exchanger.   Instead, we find a used cross-flow exchanger in storage.  For this 

one, both fluids are unmixed.  It was previously used to cool 136 kg/min of NH3 from 

200oC to 10oC using 320 kg/min of water at 7oC and its U was 480 W/m2K.   

How much air can we cool with this unit, using the same water supply, if U is about the 

same?  (We would actually want to modify U using the methods of Chapters 6 and 7 once 

we had a new flow rate of air; but that’s beyond our scope at the moment.) 

Solution: We must first evaluate the area, based on the exchanger’s previous service: 

 

Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Problem 3.30: Plot )oil and )H2O as a function of position in a very long counterflow heat
exchanger where water enters at 0°C, with �H2O = 460 W/K, and oil enters at 90°C, with �oil = 920
W/K,* = 742 W/m2K, and � = 10 m2. Criticize the design.

Solution. The capacity-rate ratio is
�min
�max

=
�H2O

�oil
=

460
920

=
1
2

Substituting into eqn. (3.21), we have

Y =
1 − exp

[
−(1 − �min/�max)NTU

]
1 − (�min/�max) exp

[
−(1 − �min/�max)NTU

] =
1 − exp

[
−NTU/2

]
1 − 1

2 exp
[
−NTU/2

] (1)

We find the water temperature from Y with eqn. (3.16), noting that water is the cold stream and oil
the hot stream:

Y =
)H2O,out − )H2O,in

)oil,in − )H2O,in
To make the plot, we can imagine that the area and NTU of the exchanger are increasing as we

move from the water inlet to the final outlet. Let’s call the position G, so that �(G) increases from
zero to 10 m2. We then write NTU in terms of �(G):

NTUG =
*�(G)
�min

=
742�(G)

460
= 1.613 �(G) for 0 ≤ �(G) ≤ 10 m2

The effectiveness accumulated up to that position is

YG =
1 − exp

[
−NTUG/2

]
1 − 1

2 exp
[
−NTUG/2

] =
1 − exp

[
−0.8065�(G)

]
1 − 1

2 exp
[
−0.8065�(G)

]
The water temperature at each location is )H2O, G . Putting )H2O, G for )H2O,out, YG for Y, and

rearranging eqn. (1)
)H2O, G = )H2O,in + YG

(
)oil,in − )H2O,in

)
= 90YG °C

The local temperature difference is given by eqn. (3.5b), from which the hot stream temperature is:

)oil, G = )H2O,x + )oil,in −
(
1 − �2

�ℎ

)
)H2O,x −

�2

�ℎ
)H2O,out = 90 +

)H2O, G

2
− 90YG=10

2
The exchanger is more than twice the size needed—right side adds nothing to the performance.
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Problem 3.36:   Both C’s in a parallel-flow heat exchanger are equal to 156 W/K, 

U = 327 W/m2 K, and A = 2 m2.  The hot fluid enters at 140oC.  If we cut both C’s 

in half, what will the exit temperature of the hot fluid be? 

Solution:   NTU = 327(2)/156 = 4.19 and Cmin/Cmax is 1.00.  Cutting the C’s in half 

will make the NTU still larger.  We see, in Fig. 3.16, that ɛ is constant in this NTU 

range.  Thus, the exiting hot water temperature is unchanged: 

                                                                                        Thot-out = 90 oC 

_________________________________________________________________ 

Problem 3.37:  A 1.68 ft2 crossflow heat exchanger with one fluid mixed 

condenses steam at atmospheric pressure (h = 2000 Btu/ft2-hr-oF) and boils 

methanol (Tsat = 170 oF and h = 1500 Btu/ft2-hr-oF) on the other side.  Evaluate U 

(neglecting the metal’s resistance), F, LMTD, & Q.  Can we evaluate NTU and ɛ?       

      U = [1/2000 + 1/1500]-1 = 857 Btu/ft2-hr-oF                      

      LMTD (per Example 3.2) = Tsteam – Tmethanol = 212 -170 = 42 oF 

      From Fig. 3.14d, F for P = 0 and any R is equal to 1.0  

      So, using eqn. (3.14), Q = UAΔTF = (857)(1.68)(42)(1) = 60,470 Btu/hr               

      NTU and ɛ are not meaningful, since neither Cmin nor Cmax is known or 

relevant.  Flow rates have no bearing on Q in this case.  This configuration is a 

simple case of conduction through a wall with two significant resistances.    

__________________________________________________________________   

                                                        24                        
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Problem 3.38  We can calculate the effectiveness of a crossflow heat exchanger 

with neither fluid mixed using the approximate formula: 

                            ɛ  ≈ 1 – exp{[exp(-NTU0.78R) – 1][NTU0.22/R]} 

where R ≡ Cmin/Cmax.  How closely does this correspond to exact results for known 

limiting cases?   Present results graphically.   

Solution   As R goes to 0, ɛ therefore approaches 1 – exp(-NTU)  

 

                 [This is exactly the single stream result, eqn. (3.22)] 

  

We evaluate the equation numerically for R = 1, and compare it with Fig. 3.17a in 

the following graph.  It shows this approximation to be very good at this value of 

R.  And it will approach being exactly the same, as R is lowered.  
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Problem 3.41 To make lead shot, molten droplets of lead are showered into the top of a
tall tower. The droplets fall through air and solidify before they reach the bottom of the tower,
where they are collected. Cool air is introduced at the bottom of the tower and warm air flows
out the top. For a particular tower, 5,000 kg/hr of 2.8 mm diam. droplets are released at their
melting temperature of 600 K. The latent heat of solidification is 23.1 kJ/kg. The dropping pan
size produces 6,700 droplets/m3 in the tower. Air enters the bottom at 20 °C with a mass flow rate
of 2,400 kg/hr. The tower has an internal diameter of 0.6 m with adiabatic walls.

a) Sketch, qualitatively, the temperature distributions of the shot and the air along the height of
the tower.

b) If it is desired to remove the shot at a temperature of 60 °C, what will be the temperature of
the air leaving the top of the tower?

c) Determine the air temperature at the point where the lead has just finished solidifying.
d) Determine the height that the tower must have in order to function as desired. The heat

transfer coefficient between the air and the droplets is ℎ = 170 W/m2K.

Solution (a) This is a counterflow heat exchanger. The lead shot is the hot stream and the
air is the cold stream. However, while the lead is solidifying, it remains at its freezing temperature.
The small metal beads will be isothermal (a calculation shows that the Biot number is� 1).

300
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]

293
333
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(b) The energy given up by the lead goes to the air.
( ¤<2?)air()air,> − )air,8) = ¤<lead

[
ℎB5 + 2?,lead()lead,8 − )lead,>)

]
(2400) (1008) ()air,> − 20) = (5000) [23100 + (148) (600 − 333)]

Solving, )air,> = 149.4 °C.
(c) We may consider the air between the freezing point and the outlet:

( ¤<2?)air()air,> − )air,solid) = ¤<leadℎB5

(2400) (1008) (149.4 − )air, solid) = (5000) (23100)
Solving, )air,solid = 101.7 °C.

(d) The height must be determined in two pieces. One is a single stream exchanger with lead at
its freezing temperature. The other is a counterflow exchanger for the section in which the solid

27
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lead cools. For each section, we need to find the NTU that gives that section the effectiveness
needed to attain the indicated temperatures. The NTU determines the contact area and therefore
the height of each section.

For both sections the overall heat transfer coefficient is simply the air-side heat transfer coefficient,
since the lead beads have negligible thermal resistance: * = 170 W/m2K. The surface area per
meter height is

� =
(
6700

)
c(0.0028)2 c

4
(0.6)2 = 0.0467 m2/m

For the single-stream side, with �min = �air, the effectiveness is

Y =
)air,> − )air,solid
)lead,8 − )air,8

=
149.4 − 101.7

600 − 293
= 0.1554

We can solve eqn. (3.22) for NTU = 0.1688. If the single-stream side has length !ss

NTUss =
*�

�min
=
(170) (0.0467)!ss
(2400/3600) (1008) = 0.1688

so that !ss = 14.3 m.
For the two-stream section, �min = �lead, and

Y =
)lead,8 − )lead,>
)lead,8 − )air,8

=
600 − 333
600 − 293

= 0.870

With �min/�max = (5000) (148)/(2400) (1008) = 0.306, we may read from Fig. 3.16: NTU = 2.5.
(Substitution into eqn. (3.21) confirms this result.) Solving

NTUts =
*�

�min
=
(170) (0.0467)!ts
(5000/3600) (148) = 2.5

so that !ts = 64.7 m.
The total height of the tower, !, is

! = !ss + !ts = 14.3 + 64.7 = 79 m
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Problem 3.42 The entropy change per unit mass of a fluid taken from temperature )8 to
temperature )> at constant pressure is B>− B8 = 2? ln()>/)8) in J/K·kg. (a) Apply the Second Law of
Thermodynamics to a control volume surrounding a counterflow heat exchanger to determine the
rate of entropy generation, ¤(gen, in W/K. (b) Write ¤(gen/�min as a function of Y, the heat capacity
rate ratio, and )ℎ,8/)2,8. (c) Show (e.g., by plotting) that ¤(gen/�min is minimized when �min = �max
(balanced counterflow) for fixed values of Y and )ℎ,8/)2,8.

Solution (a) The entropy generation is just the difference between the entropy carried out by
the flows and the entropy carried in by the flows, so

¤(gen = ¤<ℎΔBℎ + ¤<2ΔB2 = ( ¤<2?)ℎ ln
(
)ℎ,>

)ℎ,8

)
+ ( ¤<2?)2 ln

(
)2,>

)2,8

)
= �ℎ ln

(
)ℎ,>

)ℎ,8

)
+ �2 ln

(
)2,>

)2,8

)
(1)

Note that the entropy of the hot stream decreases.

(b) We’ll need to distinguish between the cases when �ℎ > �2 = �min and �2 > �ℎ = �min when
using eqn. (3.16). For �ℎ > �2:

)ℎ,> = )ℎ,8 − Y
�2

�ℎ
()ℎ,8 − )2,8)

and
)2,> = )2,8 + Y()ℎ,8 − )2,8)

Substituting into eqn. (1) gives
¤(gen
�min

=
�ℎ

�2
ln

[
1 − Y�2

�ℎ

(
1 − )2,8

)ℎ,8

)]
+ ln

[
1 + Y

(
)ℎ,8

)2,8
− 1

)]
(2)

For the case �ℎ < �2:
)ℎ,> = )ℎ,8 − Y()ℎ,8 − )2,8)

and
)2,> = )2,8 + Y

�ℎ

�2
()ℎ,8 − )2,8)

Substituting into eqn. (1) as before gives
¤(gen
�min

= ln
[
1 − Y

(
1 − )2,8

)ℎ,8

)]
+ �2
�ℎ

ln
[
1 + Y�ℎ

�2

(
)ℎ,8

)2,8
− 1

)]
(3)

Both eqn. (2) and (3) have the form:
¤(gen
�min

= fn
(
Y,
�ℎ

�2
,
)ℎ,8

)2,8

)
(c) For ' = �min/�max. Then 0 < ' 6 1. For �ℎ > �2:

¤(gen
�min

=
1
'

ln
[
1 − ' Y

(
1 − )2,8

)ℎ,8

)
︸        ︷︷        ︸
≡0, constant>0

]
+ ln

[
1 + Y

(
)ℎ,8

)2,8
− 1

)]
︸                   ︷︷                   ︸

≡1, constant>0

=
1
'

ln(1 − 0') + 1
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The easiest way to think about this function is to plot the first term for a few values of 0, noting that
0 6 0 6 1. From the following plot, it’s clear that the lowest values of ¤(gen/�min will be at ' = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1
0 = 0

0 = 1

'

ln
(1
−
0
'
)/
'

For �ℎ < �2:
¤(gen
�min

= ln
[
1 − Y

(
1 − )2,8

)ℎ,8

)]
︸                   ︷︷                   ︸

≡2, constant<0

+ 1
'

ln
[
1 + ' Y

(
)ℎ,8

)2,8
− 1

)
︸        ︷︷        ︸
≡3, constant>0

]

= 2 + 1
'

ln(1 + '3)

Plotting the relevant part of this expression, we see that it also has a minimum at ' = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

3 = 0

3 = 2.25

'

ln
(1
+
'
3
)/
'
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Another way to approach this is to plot ¤(gen/�min for fixed )ℎ,8/)2,8 and several values of Y.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0.00
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We can see clearly that balancing the exchanger, so that �max = �min, minimizes the entropy
generation rate for a given effectiveness and given inlet temperatures. (Note that fixing the effec-
tiveness does not fix the size of the heat exchanger: for any operating point, the exchanger would
need to be sized so as to provide the desired effectiveness.)

Reference: G.P. Narayan, J.H. LienhardV, and S.M. Zubair, “EntropyGenerationMinimization
of Combined Heat and Mass Transfer Devices,” Int. J. Thermal Sciences, 49(10):2057-2066, Oct.
2010.
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Problem 3.43 Entropy generation in a power cycle lowers efficiency relative to the Carnot
efficiency. Heat exchangers contribute to this loss. As seen in Problem 3.42, balanced counterflow
heat exchangers can help to limit entropy generation. Let’s look at the entropy generation of a
balanced exchanger.

a) Let Δ) = )ℎ − )2 � )c, in (in kelvin). Show that the entropy generation rate in a small area
3� = %3G (with % the perimeter) of the exchanger is

3 ¤(′′gen = 3&
(

1
)2
− 1
)ℎ

)
' *%Δ)

2

)2
2

3G

b) Show that the total entropy generation rate is

¤(gen ' &
(

Δ)

)h,in )c,in

)
c) If a fixed heat load, &, needs to be transferred, how can entropy generation be reduced?

Discuss how cost and other considerations affect your answer.

Solution (a) Equation (1.7) gives the rate entropy generation when heat flow from one
temperature to another. For a heat transfer per unit area of 3& (W/m2) going from )ℎ to )2,
eqn. (1.7) becomes

3 ¤(′′gen = 3&
(

1
)2
− 1
)ℎ

)
If Δ) = )ℎ − )2 and Δ) � )c, in, then(

1
)2
− 1
)ℎ

)
=

(
1
)2
− 1
)2 + Δ)

)
=

(
1
)2
− 1
)2
(1 − Δ)/)2 + · · · )

)
' Δ)
)2
2

With 3& = *Δ) 3� from eqn. (3.2) and 3� = %3G , we get

3 ¤(′′gen ' 3&
Δ)

)2
2

=
*%Δ)2

)2
2

3G (1)

(b) For a balanced counterflow exchanger, the temperature difference between hot and cold
streams is constant through the whole length of the exchanger (because �2 = �ℎ, the streams have
the same temperature change in response to heat transfer between them). Therefore, the temperature
varies as a straight line from inlet (G = 0) to outlet (G = !) with a slope 0 = ()2,out − )2,in)/!:

)2 (G) = )2,in + 0G/!
Putting this into eqn. 1 and integrating from 0 to !

¤(gen '
∫ !

0

*%Δ)2

()2,in + 0G/!)2
3G =

*%Δ)2

0

(
1
)2,in
− 1
)2,out

)
=

(
&Δ)

)2,in)2,out

)
'

(
&Δ)

)2,in)ℎ,in

)
(2)

where the last step follows from )ℎ,in = )2,out + Δ) ' )2,out. (Recall from Example 3.2 that a
balanced exchanger has LMTD = Δ) so that & = *�Δ) .)

(c) From eqn. (2), entropy generation can only be reduced if Δ) is reduced. Holding& = *�Δ)

fixed, a reduction in Δ) can be achieved by increasing the area or by increasing *. Increasing the
area means a larger heat exchanger and greater capital cost. We’ll see in Chapter 7 that increasing
* at fixed flow rate generally means roughening the surface or reducing the size fluid passages; but
those changes can increase pressure drop, susceptibility to fouling, and/or cost.
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Problem 3.44 Water at 100 °C flows into a bundle of 30 copper tubes. The tubes are 28.6 mm
O.D. and 3m longwith a wall thickness of 0.9mm. Air at 20 °Cflows into the bundle, perpendicular
to the tubes. The mass flow rate of water is 17 kg/s and that of air is 25 kg/s. (a) Determine the
outlet temperature of the water if ℎwater = 7200 W/m2K and ℎair = 110 W/m2K. (b) To improve
the heat removal, aluminum fins are placed on the outside of the tubes (see Fig. 3.6b). The surface
area of the fins and tubes together is now 81 m2. Explain in words why the fins improve heat
removal. If the conduction resistance of the fins is small and ℎair is unchanged, what is the new
outlet temperature of the water? Hint: See Problem 3.38.

Solution (a) This cross-flow heat exchanger has the water stream unmixed. First find*�:
*� = ('water + 'tube + 'air)−1

=

(
1

ℎwater(30c�8!)
+ C

30:c�!
+ 1
ℎair(30c�>!)

)−1

= 30c(3)
(

1
7200(0.0268) +

0.0009
(396) (0.0277) +

1
(110) (0.0286)

)−1

= 282.7
(
5.182 × 10−3 + 8.205 × 10−5 + 3.179 × 10−1

)−1
= 874.9 W/K

Observe that the air-side resistance is the largest by two orders of magnitude, and that the tube wall
resistance is entirely negligible.

We have �ℎ = ( ¤<2?)H2O = (17) (4210) = 7.16 × 104 W/K and �2 = ( ¤<2?)air = (25) (1007) =
2.52 × 104 W/K. The NTU is

NTU =
*�

�2
=

874.9
2.52 × 104 = 0.0347

This is very, very low! Figure 3.17b shows that Y will be tiny. Neither stream will experience much
change in temperature, and the water leaves at about 100 °C.

(b) Fins are added in order to increase the area on the air-side, thereby lowering the air-side
thermal resistance. If the conduction resistance of the fins is negligible, they are isothermal at the
tube surface temperature. (In Section 4.5, we show how to calculate a fin’s conduction resistance.)

*� =

(
1

(7200)30c(0.0268) (3) +
0.0009

(396)30c(0.0277) (3) +
1

(110) (81)

)−1

=

(
1.833 × 10−5 + 2.902 × 10−7 + 1.122 × 10−4+

)−1
= 7, 642 W/K

The NTU is
NTU =

*�

�2
=

7642
2.52 × 104 = 0.303

In this case, neither stream is mixed, and A = �min/�max = 0.352. With Fig. 3.17a, Y ≈ 0.25. More
precisely, we may use the equation given in Problem 3.38:

Y = 1 − exp
{[

exp
(
−(0.303)0.78(0.352)

)
− 1

]
(0.303)0.22/ (0.352)

}
= 0.246

Using eqn. (3.16), we find

)water, out = )ℎin − Y
�2

�ℎ
()ℎin − )2in) = 100 − (0.246) (0.352) (100 − 20) = 93.1 °C
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