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1.2 WVerifyv that Newton's Law of cuDlinq,-——§%Ex ﬂ“{Tbudv - T ),

is eguivalent to O “'{Tbﬂdv i I B

du d[oc(volume of body) (T — ... )
We know that: Q = Egdy = - body ref
dT
= . body
oCh At
ar (T

body _ Q __ _ 'body_ T,)
- t pcV pcV

Thus the relations are equivalent if pcV is constant.

1.3 5000 mﬁmz are transfered through a 1 cm slab whose cold side
is held at -40°C. Find AT for each of the 7 materials tabled
below. Discuss the results.

AT

g=k I ;where I is the thickness of the slab.
50 2
- = 9L _ (7000 W/m") (0.01m) _ 50
AT = (Thoe +10) = % K W/m °C % C
i k —= |aT = 22ecly  =(ar-40)°c
Material mec E hot Comments
Silver 429 0.12 -39.88 Very small AT
Aluminum 239 0.21 -39.79 Very small AT
Mild steel 57 0.88 =39.12 Pretty small AT
Ice 2,215 22.57 =-17.43 Larger AT, but not
enough to melt the ice.
Spruce 0.11 455 415 The wood would char
and burn the hot side,
kwill deviate from
the given wvalue.
85% mag. ~ 0,06 833 793 Very large AT. The
insul. correct effective
ivalue of k will differ
Egreatly from 0.06.
Silica 0.024 2083 2043 {Enormous value of AT.
aerogel The insulation will be
ruined and AT will
drop to a lower value.

Copyright 2023 John H. Lienhard, IV and John H. Lienhard, 3
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1.4 Explain why the heat diffusion equation, Emg = é-%% » shows
ax

that in transient conduction T depends on o = k/pc , but solu-
tions of steady conduction problems involve only k.

In a transient problem (one in which the local temperature
of a body changes) some of the heat flow is either stored in,
of drawn from, the body. Consequently, both k (which deter-
mines the through-flow of heat in accordance with Fourier's
Law) and the volumetric heat capacity, pc, (which determines
the storage), appear in the heat diffusion equation. They
happen to appear in the ratio, «¢. During steady conduction,
the local temperature never changes so pc is not involved in
the problem.

) 2

5 Consider the copper ﬁgfir' o
(k = 391 W,/Mm°C) rod es
at 200°C ervoir

connecting two thermal
reservoirs as shown:
The system is steady.

Find: Rate of change of § for

a) the first reservoir, c) the rod, and
b) the second reservoir, d) the universe,

as a result of the process. Relate the results to the
Second Law of Thermodynamics.

. : s AT W 2 (200-0)°C_
First, establish Q: Q = kA G 391 m_"'C (0.01m) ——E———T.BQW
" & O o T (6 - o W

THERE  Sregpl ™ W, © ~ Z00hz7s = T0-0163 oy e

s =F0 _ 7.82 _ W

Sres#2 = T, 377 = 0.0286 o —=

Srnd = O since it is at steady state. -

§ = & + & + & .= 40,0121 X

un res#l resHa rod T °K

The rate of change of entropy of the universe is positive as a
result of the process, as the Second Law of Thermodynamics
requires it to be,

Copyright 2023 John H. Lienhard, IV and John H. Lienhard, v



1.6

0.093 m'?/
Heat is conducted steadily through a
wall with k = 0.14 W/m2C as shown. therm.
res.at
Find: The rates of change of entropy 1
of the components and the universe

therm.
res.
at -43°C

2T IN

0. 1lm—™

This problem is exactly the same as 1.5 except the heat transfer
rate is higher:
70

0= 0.14(.093) 71" 9.114 W

SO

8 es. 4 ==0:03038, § _ ., = +0.03963; §_ o =0 ;

1.7

Replace the thermal reservoirs in 1.6 with adiabatic walls.
If pc = 1133.4 kJ/meC,

Find: a) the final egquilibrium temperature, Tes of the slab;
b) 45 for the process; c¢) Is the Second Law satisfied?

a,) The final temperature is obviously just a simple mean:

T=M=-E°C‘—

f 2

b.) For a solid, the specific entropy is s_sref = ¢cin T KTrtF
Thus we may write at any section of the slab:

s cln Tf,z"Ti

final Sinttial =
==0Ccin Ti’fo
¥=0.1lm A 01
Thus: AS = aﬁaJ (S_-5.)dx = =pcC j (in T./7_)dx
i L O e Al -

However the initial linear temperature profile is Ti=300°K—
(7o °K/m)x; thus dx = -dT,/700 and

230
_ e h _ 230 _ _ 220
a5 = 882 | (an T,/T,)AT, = 0.15061230 on 333 -230 — 300tn Sg+300]
Ly = 0,03081 %% -

c.) The net change entropy in this spontaneous, irreversible
process is positive as the second Law requires, -- -

4
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1.9 Determine the total heat transfer in Problem 1.8. Plot
the net entropy senerated as a function of temperature.

Qi ° S/ ¢V AT = 8954384 )4 m(o.0n9) (86) = 1125 T —t—

lﬁ?:'li _h__l s [zu 'r]=‘i‘|32'65_£ &

ukebmi'! Pais pesuld Ln,... T=313% LT o intecast

313
AS(T) = *EE.IBS [&5-F]4T = za.s[m‘ m]lg_

<2 3
""f_: 03—
5 TK AT ;15-:3_--:
7 3y 40 =]
3 ol 3 30 oa7
" Vi 23 20 0.203
--{'fj 283 10 o015
P 213 o o1
G
j‘ 0.1
£
3} -*-l—u——
E d i t i I 1 i L
40 3o o
{em?uairu.fr_ n; -1-'u SPLI!L T LY
Z
Al =%[ﬂ.n1€+§‘§-o,uuu]
1.10 Consider the heat transfer L '
through the block shown

using k = 0.7 W/m=9C.

Find the net heat transfer, Q

Q < Comshna ¥ -‘--h.{r-) .k ci;—.l-;

d.l_ = 4& ‘-'—"_——A& S E"[ - '
™ ke '[:41:‘.‘ +.254) Tk |o.25 '[,u‘liw,?fﬁl =

‘—-.ru—..nl

_-gq-t' - Q- - -_:q-f.E"'KUT N!ﬂ-'c') S D.TOW *—-———

L [-Es'{'l.mff.ﬂﬂ i -2; L«‘-'f]]

The minus sign means that the direction of @ is opposite
the x-axis.
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1.11 The waler heater shown, has an external surface

area of 1.3m2. Select an insulating

material and specify its thickness, to 4 :
100 kg
5 H,0

dat 75%¢

T

keep the water from cooling at more than

3°C/hr. Justify neglecting the thermal

resistance of the steel casing and the

convective layer.

First determine the heat flux: g = % - iﬂE%ElE.g%qunﬁi{;i;;is

= 268.6 mez

Then _ AT k _ 268B.6 _ W/meC
= k =— or tT= 9530 = 4.883 -

Now we look at various insulating materials, and see how large

t must be

for B5% magnesia: k = 0.068, ik 014 m

3 = ~
for 98B0 kg/m~ asbestos: k = 0.14, tmin =

for glass wool: k = 0.04, tmin = .00B2 m

Let's specify 1-1/2 cm of glass wool. That will be plenty safe —e——

With g = only 269 mez, the temperature drop through a typical
h = 10}m2~“c, AT = qfﬁ = 27°C. It appears that neglecting h
is not justified. We don't really need so much insulation if
the air is still around the heater.

And with g = 269 w;mz. temperature drop through, say, 5 mw of

steel is AT = (g/k) (.005 m) = 282 (.005) = 0.025°C,which is

entirely negligible.

7
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1.12 The two walls shown offer negligible

= o

thermal resistance. Find the temperature vacuum T =22 R
on the L.H.S.

- - - 4 8 h=50 h=20"
q = hpg(373-Trpg) = 0 (T g~ TRrys)

T _=393°K
= h (T, ...—293)
RHS ""RHS TLHS TRHS

To simplify computation, define t = T/100. Then

_ 4 4 @
50(100) (3.73-tL) = 5.67(tL—tR) = 20(100) (tR 2.93)

or
3.73-t, = ZFEL (t1-th) = 0.4t,-1.172
Then .
£, = 4.902-0.4t, and tj = 12.255-2.5t
and
t, = 3.73-0.001134 (tﬁ—[12.255—2.5t5]4)

which must be solved by trial and error

tL RHS of egn.
3.4 3.804
3.5 3.731
3.6 3.667
3.65 3.638 -
3.64 3.643 —=——__close enough.TL = 364°K = 91°C —w——_
= o e
and TR 42,5°C

Copyright 2023 John H. Lienhard, IV and John H. Lienhard, V.



Develop conversion factors for «, g, o, o, Fl 5 S, c
2 2 2 2
m- _ . om ft T £t~
¢ Lg= 1% Loy = 10:76% "
2
i 8 4
i 1 12_ =1 g ( 30;18: m, (O 00g94783 Btu, 36}(325 = 0.317 Btg
m m-s ft-hr
3
p: 1 kg ., kg (2:2046 1bm, (03088 M7 _ 4 gg243 1B}
m m El ft
W W 317Btu/ft2hr °K 4 Btu
o 1l 5——7=1- . 5 (1 85R) = 0.03020 > 7~
m °K m °K W/m - ft-hreR
Fi_o¢ 1 =1 (since F, , is dimensionless, the conversion
factor i; unity.) —=
S: 1 J -1 o (.0094783Btu)( kg mole )
) kg mole®K ~ kg mole®K J 2.204621bm mole
[+]
K
* 175w
Btu
=0.00023885 ].bm—mo'l_e"’hﬁ_‘
kJ _ kJ 0.94783Btu kg °C _ Btu __
c: 1 ygec = ! ggec T k3 ) (32086216 (T78°F) 70228951 -oF

Copyright 2023 John H. Lienhard, IV and John H. Lienhard, V.
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are o?aq_ue SRR

q = o(v, -1 )= 0@, -T, ) s 2Ty = T,*a7

T2

4 2
2= Yoz = 33400°K = €.01%C =——

[]S Sd-mf as S bul’ Naw -“qa,,-e oyt -‘-_u_u_d": ?\al"CS Cu-o‘hrt Loaant "'\__‘.;__u
ll‘l’fl-(VhCAlq.i‘( Lc«npmhns i

= G _+— ¥\ _ 4 4 4 _ =«
4=00"-1.7)=o(m, T,,)=<r(1‘,—141

4
So : ) 1’ 4 Y s =
Te = O'S(T\q*la) = VZT: "qu.
——

L

%T: = }t 1'."-»1’.,4' = Lszv3e® ot
_r"!-
so T4 = 31145°K = 4445 ———
—_—
4 4t _ =* =¥
Thaw T, -1, =1, =1,
4 -8 T
ol T, = YT T = 343.53%K = 1593 °C — s
motﬁh
S~
.
o \
Tﬂ‘“r’ L \
50 |— e
N
e
Mg
&
O e
i— 2 P\r.’re Wo, 3 4+
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1.16 Consider the conduction-radiation fp11

configuration shown: = f
Write the relation: z_{k~ AR } L= 10em
Arad Th _J 1

= f(N = —) e .
9cond. @ Te mﬂ‘

a dimensionless group to be determined

and plot it for Qprad/9co = 0.8, 1. and 1.2. ldentify
the given operating pu&nt and +ind T,

: 4
e, s 0T -T) ol (N

1
Fed GG K WO TN S-

I( quu/8ed =4 e N=(®-)/(B-) whid s plbied below:

m- 0

™ — g
’ //;
';I - TEH (i a-t Y
T~ Ln-“,ju.r_"ll.m /

~ 5 X

1L

2 sol— g

;: / e m-{:
sﬂ J'ﬂa 11

3 B Aanmngq
£

o [ -

{

""'E - 0[7!.!'&1‘1"5 an‘l'

L - |

= O === = |

o { 2.} 5 4
{:G-rfm-};rrw mﬁn_, e = T;/T,_
0.1
In the present problem: N = = 17.54

5.67 x 1078¢0.1) (1003
so ©= 2.14. Therefore the operating temperature is

T

T = 2149K —=

Copyright 2023 John H. Lienhard, IV and John H. Lienhard, V. 1



111) Pt T, (&) v black sphere bleck
He ¢ {c.—e séawn : mihally a fem Suvrouua‘mas
/ ' zoe’ atr 207
k=320 W/wik
CVJ(T:I“) =-TA (T‘LT;*) whee Ve qjﬂl'(; ond A= 4nRY, The
Ak |uhre.—,( ca()acn\-} equation com he used

KE R /e e W = TAGLL )

£
-n‘usl T A g
T—I‘T —a 1‘; A‘E “—*“‘ _"‘
-,
T.T 'Y £CR =¢A(T l*T:XT *T&\
¢ sa '
‘ o T 56710 9)417@.0&(‘1731; 2937')(47»293)5;—:;’-)
N |t aT ] _ _ Ll
2 L the = == = 2]7<16 " it s very
ZTJIZOM Ta-T Ta,L 7 Rt by _
ovr: £ 954 (384 )(o.0) i“‘ i T Ter T . “:| = e
()5 Clac® Tt iln, o) T T4 T. —
L= a0z, 2 I_' 35849 - (113293413 | iy
- A 9784 + (A13-T)293 4137 rhoe - °’“]
413°K= 200
TOK 'éSec,
412 4,15
470 14'4%L
< 450 122.
ot 400 532,32
350 13815
360 5133,2
295 7001 .
*K = 1007 |— 24 3915,
313°K=1007C 293.1 13005,
293.001 22 33.
293.00001 3z ,\33.
29300000 36,664,

S50C

293K = 20% l l
K= 2 e (000 2000 3000 4000 S0 £

30min i“r
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Problem 1.18 A small instrument package is released from a space vehicle. We can
approximate it as a solid aluminum sphere, 4 cm in diameter. The sphere is initially at 303 K
and it contains a pressurized hydrogen component that will condense and malfunction at

30 K. If we approximate outer space to be at 0 K, how long will the instrumentation package
function properly? Is it legitimate to use the lumped-capacity method?

Solution

SV = - cAT?
t
o 30 3
? AT oA T
— = At ov 1 = 24
To pev 37 R
303 e 303
“MS .
_ 2107 (965)(0.02) - i
‘.30! 303° 2(s.¢)o07® 10'000031-]‘3‘55 e

= 33] \\f

3 5 _
eT; _5a16.03) 10 i
k/L.  (~2s0) /0.02

luwrﬂ\ taeuqb eheck (See ].\']B Bos

= diooaizt 241 ne rmL\‘-..\\

1.19 Find the heat flux through the wall
shown, and the temperature of the RHS.

. M
k"‘m‘c éﬁ)
B3 W
q.___ 1200-:%_“_3 = 3(.‘_&“5_03 26C ‘l 3““_1
o.
05w —=|

= o
S -\TLH—S-”A}‘S C

A= 3(114.3-0) = 342. ‘3 e

1.20 Prove that T is linear in x during steady planar heat con-
duction.

91T \_3_-_‘: 42 LI 1w Pais ca wk e hwice A ! T=‘ C.+C ,4 -
S taat o AP cser Luteguke e and @ =

Now ak xz0,T=Ty se C =Ty, adakr x=l T, so e = (T Ty /-

11 Hl\lows Mk T’;T,L,"“ T"'.L':r_l_l-_: e

13
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1.21 Consider the wall shown.

km“ = A+RT
- 1

TZ.
let AT:zT,-T;
E_'}L an e%ua‘hw gu‘i o é % -
Faurler"s La-..-.l b ﬂ-= —(f.H—%T) g wl\\m 6[1: r.dnsl'l-u-\'

& T2
Puerehiea § 3 S BbaTYAT

o 13

96 - AlT-T) = B (A

- ALT | 8(1.*T)
ﬂr 5 + 5 Yy -

TIIM 1S a u{zré ml;\or!h‘l.-.‘- fﬂ.mrcrcajnm #L -Hus Msul#: bj
rearfmzm«s W+ owe obiam

: (A-} ET::T').&T - k(nvj} AT
s ®

This means that g may be evaluated precisely in plane steady
heat transfer if we use the mean value of k.

Copyright 2023 John H. Lienhard, IV and John H. Lienhard, V.
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1.24 An aluminum beverage can (12 cm high and 6 cm in diameter) is
initially at refrigerater temperature--say 3°C_. It is placed
in the kitchen at--say--25°C. If h = 13.5 W/m2-°C, how long
will it take for the beverage to reach 15°C? (This would be a
12 oz. can.)

Additional assumptions: The beverage has the properties of
water. The aluminum offers no thermal
capcitance. The bottom of the can
resting on the table is insulated.

The beverage along the inner walls of the can will warm up first
and rise, then stir in with the cooler liquid toward the middle.
That action, not conduction, will keep the temperature close to
a mean value as it warms. The Biot number is thus meaningless.
But the liquid will nevertheless remain close to a constant
temperature and the lumped capacitance assumption will be valid.

o _ °CV _ 1000(4190)7(0.03)%(0.12)

— > = 4138 sec.
hA 13.5[7(.03)“+n(.06) (0.12)]

We want © Te _ 15-25

T,-T_~ ~3-25

= 0.4546 , so eqn. (1.21)fTves:

0.4546 = o t/4138

Thus the cooling time, t, = 3263 sec or 54.4 min

1.25 Find the far temperature of the 0.1 m wall, _"lo'h“*

s

desinated as T, Assume that both walls °£

\

are black vacuum | >

\

c

"

-k %% = 0([127+2731%- [27+2731%) ~

T=21% T g7
o Rl e =717 °

17.5 -2 = 5.67 (4%-3%) = 992.25

sO Ta = 132.7°C ==

16
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L26 A 4aom c\law\, 17 carbon steel, S?herel itiall a'}-ZOO"CJ
1S cooled b<j natural Conveetion with awe at+ 20%.. Ia
"HHS case h 15 not mc\ePemole‘H ot %Perabrc Insjrt’adl
h S S'\(A'T"‘C.B/4 W/mz ¢ . Vlot \S\Jl\erc_ as a ’F‘unc.'}"m»\
og + . \/ert;j +he MMPGA ca‘z)aa\% aSSu.M?'ha\m :

A-T,) Wik 3,61 5)4
== — (T-Taw) = - -
at pev LT P RP) (T-T)
£ +
°r AT-Ta)  _ _\ 0534t _ _10.53
T e pcR - AL
T=260 Q
o l l 10.53 N B}
1 e st [ ey - + = ~=0.c0057
T x |T-20)/4 vao"“\) 7861 (413)0.005) '€
50 \ ys
L - a38[aps -] ~
Zoo ‘ C)\C&k u\n\?erj cafau% aSSum?%UV\
E){_ 1 Mng 3.51(200- 'LD) [0 oo)}
ma . 43
1SO |-

= 0.0015 << 4

The CLSSumpxrw»‘ s OX . et———

o
G

Sphece Tem P_cm)rure L R 4

20 L >
S CON 5 b ume,t sec.

7

Copyright 2023 John H. Lienhard, IV and John H. Lienhard, V. 17



127 A 3cm diam., black sphecical heater 15 kepk ab 1100°C.

I4 radla+cs/ Fhrough an evacuated connulus to a surr-
Ouno\mj S?hemcdl shell of Nichreme L . The she)) has a
Yem LD and 1s 0.3 cam +thick . I+ s black o the in-

sw\e MJ s held at L35° o ‘Hne ou‘\‘Su\e; Find:
a) The -\'em\;em%-urt of e tnner wall of the shell and b)dhe

heat transter, Q. (Treat 4he shell as a )p]ane wall )

T, =1373°K T = 298.15 K
h o -
%43' QmJ = cha\.

T =T =
@ A h ( W TL ) ke thickness

A

* 2
Awvde b A‘h:ﬂDh a»«cly} Sf{p'?(to)-e(i?,‘):;‘r_-v"*}: 10T;_—Zﬂ3.15' D_s_\
fj - o0.co03 D,
——
=2

we 5@\\/2 ‘H'\ls ‘(‘Dr T[. _,\03 ‘\‘r‘la\ Ma\ error, ‘-\\r\e t‘eSu“—\s .

T, = 304.85 K= 32.7 C"—o

,‘\l\%: -8 2 4 9
Q= QraA = 5,67x10 fﬂ(o.ca)](\B‘lB — 304.85 )

= 58 W

. _ (304.85 - 298.15) 2
Checking: Q=Q cma = 10 — 3 [T‘\Co'oc’\]

= 568W —

18
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Problem 1.28 The sun radiates 650 W/m? on the surface of a particular lake. At
what rate, ™ mm/hr, would the lake evaporate away if all this energy went to
evaporating water? Discuss as many other ways this energy can be distributed as
you can think of. (hg, for water is 2,257,000 J/kg.) Do you suppose much of the
incident radiation goes to evaporation?

Qrud = Quatent
650 J/m?>-s = pekg/m’ [ m /1000(3600) m/s] hg, J/kg
= [997(2,257,000)/3,600,000] m
So the maximum possible m would be 1.04 mm/hr
Other places Q.4 could go, include:

(a)  Much of the visible portion of Q4 reflects off the surface. (The visible

part of solar radiation is quite large so this could be important. See Fig.
11.2)

(b)  Some of the visible and ultra-violet parts of Qg will be transmitted
and/or absorbed below the surface.

(c)  The infrared portion, which is absorbed at the surface, can go three ways:
 Natural convection will return some to the air.
e Some will conduct to the colder water below.
» Some will reradiate to the sky at night.

Thus, the surface cannot get very hot, and the rate of evaporation should be far less
than our calculated value of 1.04 mm/hr.
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1.29 It is proposed to make picnic cups, 0.005 m thick, of a new plastic
for which kek_(1+aT%) where T is expressed in °C, k_=0.15 W/m-°C, and
a=10"%"C"2, We are concerned with thermal behavior in the extreme

case in which T=100°C in the cup and 0°C outside. Plot T against

position in the cup wall and find the heat loss, q.

in this case

ﬂ_: icb(1+ﬁ'f1')% = Comsdnat

| =0.005
e 9 | Taetd where T(zL) =100
e gdg (1+ -.:.T‘)A.T T(x=0)=0
%8 T(xz0)
or | DO
TR
kn - = O
: - -4
50" g H I.,_,b 5 ‘_L.b"_-[ 2 4000 W /> —
unﬁg 3 —_—

Had oe IAJ‘E‘jth&S\ ::m'l} i, iateest ~- nat +u L_J'}"na—\:

c_]l = 4000 = lf'x_'LT{AJ t ‘%-Tal:"}_]

o
A.m,:.g [T ) + E'_; T L‘}x
|60 —
{ t‘lﬂ‘h.’-= Chwse a value
&R nfT'r.und Calowlake
the ﬂnrrfbfnﬁ\ﬁlm )
e N Donk ec b l‘llﬂ'n‘} “])
Sa'l.umg fv T at
3!“« x5, 'L'rj teink % ereof,)
L L L - ('.Dhamb e
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1.30

A disc-shaped wafer of diamond IIb is the target of a very high
intensity laser. The disc is 5 mm in diam. and 1 mm deep. .Ihe
flat side is pulsed intermittently with 1010 W/mZ of energy for one micro-
second. It is then cooled by natural convection from that same side
until the next pulse. If h=10 W/m2-°C and T_=30°C, plot Tyisc 25 8

function of time for pulses that are 50 sec apart and 100 sec apart.

(Note that you must determine the temperature the disc reaches before

it is pulsed, each time.)

- n n o -4
Firs b e\/a\umte _'j'-E.: h A e Z(o,oos) = 1263 (10) .
pev 325’0(5'.0)% (oosY(oooY)  0,03254  |6SD

The disc receives 10" 3

= -G
=~ T (p.005) m® < 15 s = 01964 I

m=-s <k Eu\sc

So 14_5‘ 4@/)«\??_(-(4*—“{{ rises * lec’q-I
0.

Tt —— = (.034 &
L F Jocv J/x e ‘rfpu\“

i

Tl»c Coolma/ sl be as AQScrllﬂe.g.ﬁ L& e%n, (l.ll)

LT TESRARRT | it 2363 5 Dok eiales
T~ T T -(Bo-C.034)

We solve Y\is Sxm T;_ g % T-F = 471.\1 Sosec mé‘trva\
Then using eqn,(l.ll) we plet: 3,& = 37,23 100 sec ta berval
Td.sc

°

¢
\I\\ \[\iyu\se/ﬂ)s
o ™~

50
40 \

e B Bl e e b1 Vu\Se/IDD 3
3("') 1 l | 1
O 9 {0V 150 200 250

tine | bt sec
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1.31 An old incandescent 60W light bulb is roughly a 0.06m
diam. sphere. Its surface temp. is 115°C. The average
heat transfer coefficient outside the bulb is 8.2W/m°K

(a)Show that the peak radiation from the glass to the
room has a near-infrared wavelength.

(b)What is the heat loss from the glass if €giass = 0.947?

(c)How much heat transfer remains to occur by direct
radiation from the filament through the glass?
Most of that energy is not in the visible spectrum.
These bulbs were very inefficient.)

a.) Wien’'s Law, eqn. 1.29: p at max ep, = 2898(115 + 273)
= 7.47 pm

(See Table 1.2)

b.) Q from glass = hAAT + OA(T%uib - T'm) Eglass
= Tn(0.06)2(115-25) + 5.67(10)8% n(388% -2904)0.34
= 7.125 W + 9.397 W = 16.52 W
c.} Percent of direct radiation from filament

= (115 - 16.52)100/115 = 85.6 percent

1.32 How much entropy does the light bulb in Problem 1.31
produce?

S ne " +é *"éraa
<rergy dobulb © Zbull M

S—— ——
O since enerqgy 0 41-5}3_.‘4} Lo @+e voowm
Cnters as State - 2.

clctrical work

it
= c>+o+-“5':r/"‘ - = 0.4L37—
(213+25)K Ksec

s
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1.33 Air at 20°C flows over one side of a thin metal sheet (H=10.6W/m2-°C) .

Methanol at 87°C flows over the other side (h=141 W/m2-°C) . The metal
functions as an electrical resistance heater, releasing 1000 W/mz.
Calculate: a) the heater temperature, b) the heat transfer from the

methanol to the heater, and c) the heat transfer from the heater to

the air.
_ (Tu=200) ¢ =
W= ‘O’ba a"\u ?laLr. "-nm« we .+ 4'elc;'t..ﬁ'. +o \)\ai-c g"‘hoaé'“\‘fl":‘
h =141 l4l(.8’!—T@la3-c3 +io00 =|O-C=>(Tpha\-c.‘ 20)
(v, =81%) o
Nt ! Tylake = 88.217C =
\ = - < _. - IG%- S— W M‘L -
o q’me-\-\« ‘o heater 41(e1-88. )b /

N
a"v\ea-kf b oar = 10.6(88,21-20) = ’7'50,‘5‘W/m -

1.34 A black heater is simultaneously cooled by 20°C air (with h=14.6 W/mz-"C)
and by radiation to a parallel black wall at 80°C. What is the tem-

perature of the first wall if it delivers 9000 W/mz.

006 = 14.6(Ty- or213] )+ 5.LGT(T - foren])

or
Twa' = Zf&.‘)}(no)‘o — o.OZS?S‘(tD)‘OTu

Solve (03 il ’ﬁ ervor

ool Tww  LHS  RUS we obtun
GOoPK,  1296U0)” 9.52(10)° Twa\\ = 567 °K
550 ALY 0,91 .
560 3,835  10.55 o =290 -
565 10.19 oL
S60 0.4 10.34
567 10.34  10.,3)

(“ﬂrs Swes 4447, L)j
Conu6¢‘\'lw andl 5-5‘.(37;9
buj (‘aclna‘hwx.)

[
[\
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Problem 1.35: A 250 mL (8.3 oz.) aluminum beverage can is taken from a 3°C refrig-
erator and placed in a low humidity, 25°C room (h = 7.3 W/m?K). The 53.3 mm diameter
by 112 mm high can is placed on an insulated surface. How long will it take to reach 12°C?
Assume that emittance of the can is very low, so thermal radiation is negligible. Discuss
your other approximations.

Solution: The beverage has about the same properties as water (p = 999.9 kg/m?, ¢ =
4200 J/kg K). We can neglect the heat capacitance of the thin aluminum can. We can
also assume that the liquid in the can will circulate under buoyancy, so internal
temperature gradients will remain small. Then a lumped capacitance solution applies.

The surface area for heat transfer is the top and sides of the can:
A =nD*/4 + nDL = n [(53.3)%/4 + (53.3)(112)] X 107 m? = 0.02099 m?
and the mass of liquid is:
m = pV = (999.9 kg/m?)(250 X 107% m?) = 0.2500 kg

The time constant is
_me _ (0.2500)(4200)

hA  (7.3)(0.02099)
=6953 s
Using eqn. (1.22) with T; = 3°C and T- = 25'C, we solve for the time at which T = 12'C:
P> e ot/6853
3—25
0.5909 = o t/6853

= — In(0.5909) - (6853s5)=3605s=1h5s

Problem 1.36: A thin sheet is a resistance heater, parallel with 3 em slabs of cast iron
on either side, in an evacuated cavity. The heater, which releases 8000 W/m2, and
the cast iron, are very nearly black. The outside surfaces of the cast iron slabs are held
at 10°C. Find the temperatures of the heater and the inside of the slabs.

q = 8000/2 = k (T; -10)/L. = 52(Ti— 10)/0.03

so: Ti=123°C=285.5K

T=i8t
Then: g =4000 = o(Ty' - T;") so

Ty = [4000/5.67(10)® + 2855 = 527 K = 254°C

24
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Problem 1.39 At what minimum temperature does a black radiator have its
maximum monochromatic emissive power in the visible wavelength range? Look
at Fig. 10.2; then describe the difference between what you might see looking at
this object in comparison to looking at the sun.

Solution In accordance with eqn. (1.28), and using Amax.visibie = 0.00008 cm,
0.00008 T = 0.2898 cm K. Therefore T = 3623 K

The sun radiates at about 5777 K (see Fig. 10.2). This is a substantially higher
temperature. It also delivers its maximum e, at a much smaller wavelength — one
at the lower end of the visible range.

Problem 1.40 The local heat transfer coefficient during the laminar flow of fluid
over a flat plate of length L is equal to F/x*2, where F is some function of fluid
properties and the flow velocity. How does the average heat transfer coefficient
compare with h(x=L) if x is the distance from the leading edge of the plate?

Solution: We use the definition of the average to get:

L
p_ 1L _ o Ex2| _ 5 F _ _
h—Lthdx—ZL O—Zﬁ—Zh(x—L)

Therefore, the average heat transfer coefficient=h =2 h(x = L)

Problem 1.41 An object is initially at a temperature higher than its surroundings.
We have seen that many kinds of convective processes will bring the object into
equilibrium with its surroundings. Describe the characteristics of a process that
will do so with the smallest net increase in the entropy of the universe.

Solution Entropy is not a path function. Any process connecting the initial to the
final states will yield the same increase of entropy.

26
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{.47 A 250°C cylindrical copper billet, 4 cm in diameter and 8 cm long, is
cooled in air at 25°C. The heat transfer coefficient is § sz*"c.

Can this be treated as lumped capacitance cooling? What is the
temperature of the billet after 10 minutes?

Vo]um& = %'{a.nq}‘{a.ﬂa) = 0.0001805 ml y ﬁmiig-—fo,gq}1+ fr{u.m){g._o;)

2 0.01257 mt

Base Bi o V/A

il

0.008wm (We could alse have used B2 = 0.010

or Some other o:S-Lnllhes om The
Savme ovelar of mnan.mde M

%i o T\ V}_A_' - SEQ.GDE)

The e = T39y - 0000102 << { . Ix s OK 4o use
'Iu-fv-.;l' Eafacrl-:j_
pev 6.008
T = LA = 354(&554)_'}._.-; SSoy sec
- TLO min) - 25 — OO sec/SSoisec -

-——

PrROBLEM 1.43: The diameter of the sun is roughly 1,391,000 km, and it emits energy as if it
were a black body at about 5772 K. Determine the rate at which it emits energy. Compare this with
the known value. How much energy does the sun emit per year? [1.21 x 1034 J/y]

Older versions of AHTT used 5777 K for the solar temperature and 1,387,000 km for the solar
diameter. The results are nearly identical.

SOLUTION
The radiative power emitted by the sun is

Qi = nD?% oT?

sun sun
= 1(1.391 x 10%)2(5.670374 x 1078)(5772)*
=3.826 x 10> W

With the SI prefixes in Table B.1, we could instead write Qgn, = 382.6 YW (“yottawatts”). This
value is a nearly exact match to the 2015 standard value of 3.828 x 102® W [See comment below].
The annual energy is

Equn = (365.25)(24)(3600) (3.826 x 10%) = 1.207 x 10** J/y = 1.207 x 10° QJ/y

Comment. The International Astronomical Union provides the solar data used here: PrSa et
al., “Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3,”
Astronomical Journal 152:41, 2016, doi:10.3847/0004-6256/152/2/41.

27

Copyright 2023 John H. Lienhard, IV and John H. Lienhard, V.



PROBLEM 1.44: Room temperature objects at 300 K and the sun at 5772 K each radiate thermal
energy; but Planck’s law, eqn. (1.30), shows that the wavelengths of importance are quite different.

a) Find A4« in micrometers for each of these temperatures from Wien’s Law, eqn. (1.29).

b) Using a spreadsheet or other software, plot eqn. (1.30) for 7 = 300 K as a function of
wavelength from 0 to 50 nm and for 7 = 5772 K for wavelengths from O to 5 pm.

¢) By numerical integration, find the total area under each of these curves and compare the
value to the Stefan-Boltzmann law, eqn. (1.28). Explain any differences.

d) Show that about 1/4 of the area under each curve is to the left of A, (in other words, 3/4
of the energy radiated is on wavelengths greater than Apax).

e) What fraction of the energy radiated by the 300 K surface is carried on wavelengths less
than 4 pm? What fraction of the energy radiated by the 5772 K surface is on wavelengths
greater than 4 nm?

Earlier versions of AHTT used 5777 K for the solar temperature. The results are nearly identical.

SOLUTION.

a)

L _298777um-K _[9.9592pm  at300K
max TK ~10.5176 um  at 5772 K

b) The plotting and integration can be done in various ways depending upon what software
is used. The results in Fig. 1 are from an Excel spreadsheet with a step size of 0.2 nm at
300 K and of 0.02 pm at 5772 K.

9.0E+7

w
a
o

E
— 3
£ 300 ~  8.0E+7
3 30. c
e E 7.0E47
E 25.0 .
= O 6.0E+7
5 :
z 200 o 50847
g 2
g 150 9 40847
= £
g Y o3.0E+7
S 100 =
z 20847
o <
9 5.0 e
_é = LOE+7
)
0.0 0.0E+0
0 10 20 30 40 50 0 1 2 3 4 5
Wavelength [um] Wavelength [um]
(A) 300 K (B) 5772 K

FIGURE 1. Plots of Planck’s law at two temperatures

c¢) Using the values from Excel, a trapezoidal rule integration gives the area under the curve:

445.2 W/m?> at 300 K

Integrated area = - 5
6.261 x 10’ W/m~ at5772 K
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The Stefan-Boltzmann law yields (with o~ = 5.670374 x 1078 W/m? K*)

4 |459.3 W/m? at 300 K
6.294 x 10’ W/m? at5772 K

At 5772 K, the integrated value is 99.48% of the Stefan-Boltzmann law, and at 300 K, it
1s 96.93%. The principal reason that these values are low is that energy is also radiated at
wavelengths higher than the range of integration.

d) By integrating up to Apax from part a),

/lmax

oT? 0

28.4% at 300 K

T)dl =
ean(T) {29.6% at 5772 K

These values are bit more than 1/4 of the total energy, but are often stated as “about 1/4”.

e) Similar integrations show that a 300 K surface radiates only 0.33% on wavelengths below
4 pm and that a 5772 K surface radiates 99.0% on wavelengths less than 4 pm (or 1% on
wavelengths above 4 nm). This fact enables the design of materials that selectively absorb
or reflect solar energy (see Section 10.6).
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Problem 1.45

A crucible of molten metal at 1800°C is placed on the foundry floor. The
foundryman covers it with a metal sheet to reduce heat loss to the room. If # is
0.4 between the melt and the plate and 0.8 between either the melt or the top of

the plate and the room, how much will the heat loss to the room be reduced by
the sheet?

SorutioN. First find the sheet temperature:
g=(0.8)a [T - (20 +273)"] = (0.4) 0 [(1800 + 273)* — T3]
This gives T, .., = 1575°K, so

q with sheet o 080(15754 - 2934)
q without sheet 080’(20734 B 2934)

The heat loss is therefore reduced by 66.7% by the shield.

=0.333

30
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PROBLEM 1.46: Integration of Planck’s law, eqn. (1.30) over all wavelengths leads to the Stefan-
Boltzmann law, eqn. (1.28). Perform this integration and determine the Stefan-Boltzmann constant
in terms of other fundamental physical constants. Hint: The integral can be written in terms of
Riemann’s zeta function, {(s), by using this beautiful relationship between the zeta and gamma
functions

oo s—1

() T(s) = J dt

0 el —1
for s > 1. When s a positive integer, ['(s) = (s — 1)! is just a factorial. Further, several values of
£ (s) are known in terms of powers of 7 and can be looked up.

SOLUTION.
(D ep(T) = eqp di
o 0
@) (" 2rhc? il
~ Jo A3 [exp(hcy/kpTA) — 1]
3) " >° 2nhyv3 J
= v
Jo 2 [exp(hv/kgT) —1]
2nkATH (> 53
4 =_B
0 o L Ly
We are given
0o s—1
(o) = | ar
For our case, s =4 and I'(4) = 3! = 6. Hence:
5) )= 25 L
ep = !
h3c?
127k?
(©6) = (T
o
Zeta is a famous function, and the value at 4 has been established to be:
4
bis
4) = —
(@) = 5
Hence:
2m k4
_ B | 4
) ev(T) = (1sh3cg)T
(8) =oT*

where we have also found the Stefan-Boltzmann constant in terms of fundamental physical constants.
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