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 The fin efficiency, ηf = tanh(mL)/mL = 0.8913/1.428 = 0.624 = 62.4% 

 The fin effectiveness, є = ηf (fin surface area)/fin cross-sectional area 

  є  = 0.624(2πrL/π r2) = 1.248L/r = 25 

  18 
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= 0.836m
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Problem 4.42 A proposed design for a large freezer’s door has a 2.5 cm thick layer of insu-
lation (𝑘in = 0.04 W/m⋅K) covered on the inside, outside, and edges with a continuous aluminum
skin 3.2 mm thick (𝑘Al = 165 W/m⋅K). The door closes against a nonconducting seal 1 cm wide.
Heat gain through the door can result from conduction straight through the insulation and skins
(normal to the plane of the door) and from conduction in the aluminum skin only, going from the
skin outside, around the edge skin, and to the inside skin. The heat transfer coefficients to the
inside, ℎ𝑖, and outside, ℎ𝑜, are each 12 W/m2K, accounting for both convection and radiation. The
temperature outside the freezer is 25°C, and the temperature inside is −15°C.

a) If the door is 1 m wide, estimate the one-dimensional heat gain through the door, neglecting
any conduction around the edges of the skin. Your answer will be in watts per meter of door
height.

b) Now estimate the heat gain through the aluminum skin that wraps the outside and inside of
the door. Heat will be conducted from the outside, around the edge of the door, to the inside.
For this calculation, assume that the insulation is perfectly adiabatic and ignore the bottom
and the top of the door. Your answer will again be in watts per meter of door height.

c) Suggest a few design changes that might reduce the heat conduction around the edges of the
door.

Solution
a) In this case, we can make a series of one-dimensional thermal resistances on a per-unit-area

basis (1 m width and per meter of height). We assume that all the heat flow is through the
aluminum into the insulation and out the opposing side.

𝑇air, out

1/ℎ𝑜 (𝑡/𝑘)Al (𝑡/𝑘)in (𝑡/𝑘)Al 1/ℎ𝑖

𝑇air, in

The equivalent resistance is

𝑅equiv =
1
ℎ𝑜

+ 2( 𝑡𝑘)Al
+ ( 𝑡𝑘)in

+ 1
ℎ𝑖
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= 1
12 + 2(0.0032165 ) + 0.025

0.04 + 1
12

= 0.08333 + 2(1.939 × 10−5) + 0.6250 + 0.08333
= 0.7917 K-m2/W

Note that the thermal resistance of the aluminum is entirely negligible. Since the door is 1 m
wide, the heat gain per meter of door height is

𝑄normal =
𝑇air, out − 𝑇air, in

𝑅equiv
= 25 − (−15)

0.7917 = 50.53W/m

b) Here, we can model the inside and outside surfaces of the door as very long fins. The are
separated by a conduction resistance for the aluminum that passes over the nonconducting
door seal. For all these resistances, the problem asks us to assume that no heat travels through
the insulation.

𝑇air, out
𝑅fin,out (𝐿/𝑘𝐴)Al,seal 𝑅fin,in

𝑇air, in

From eqn. (4.51) and (4.56), noting that only one side of the fin has heat transfer and
evaluating 𝐴 and 𝑃 per unit width of door (𝐴 = 𝑡Al, 𝑃 = 1), the fin resistances are

𝑅fin,out =
1

√𝑘𝐴ℎ𝑃
= 1
√(165)(12)(0.0032)(1)

= 0.3973 K-m/W

𝑅fin,in =
1

√𝑘𝐴ℎ𝑃
= 1
√(165)(12)(0.0032)(1)

= 0.3973 K-m/W

and the equivalent resistance is

𝑅equiv = 2(0.3973) + 0.010
(0.0032)(1)(165)

= 2(0.3973) + 0.01894 = 0.8135 K/W

The thermal resistance of the aluminum is 2.3% of the total thermal resistance. The heat
gain per meter of door height, accounting for both the left-hand and right-hand sides, is

𝑄edge = 2
𝑇air, out − 𝑇air, in

𝑅equiv
= 225 − (−15)

0.8135 = 98.34W/m

Additional heat gain will be associated with the top and bottom edges, each 1 m in width.
The edge gain substantially exceeds the heat gain in the normal direction.

c) Some improvements could include:
• Change the material used from aluminum (𝑘 = 165 W/m⋅K) to a stainless steel (𝑘 ≈
15W/m⋅K).

• Reduce the thickness of the metal skin from 3.2 mm to 1 mm or so.
• Introduce a “thermal break” in the skin at the location of the seal, to interrupt the path
of heat conduction. This break could be, e.g., a joint in the material that incorporates a
layer of nonconductive material.

• Make the inside skin of the door out of a hard plastic, rather than metal. The plastic
might be ABS (acrylonitrile-butadiene styrene) or HIPS (high impact polystyrene).
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Problem 4.43 A thermocouple epoxied onto a high conductivity surface is intended to
measure the surface temperature. The thermocouple consists of two bare wires of diameter 𝐷𝑤 =
0.51 mm. One wire is made of Chromel (Ni-10%Cr with 𝑘cr = 17 W/m⋅K) and the other of
constantan (Ni-45%Cu with 𝑘cn = 23W/m⋅K). The ends of the wires are welded together to create
an approximately rectangular measuring junction, with a width 𝑤 ≈ 𝐷𝑤 and a length 𝑙 ≈ 2𝐷𝑤.
The wires extend perpendicularly away from the surface and do not touch one another. A layer of
an epoxy (𝑘ep = 0.5 W/m⋅K) separates the thermocouple junction from the surface by 0.2 mm.
The heat transfer coefficient between the wires and the surroundings at 20°C is ℎ = 28 W/m2K,
including both convection and radiation. If the thermocouple reads 𝑇tc = 40°C, estimate the actual
temperature 𝑇𝑠 of the surface and suggest a better arrangement of the wires.

Solution The wires act as infinitely-long fins extending away from the surface. The epoxy
layer acts as a thermal resistance between the surface and the ends of the wires, which we can
approximate as a simple slab resistance. Thus, we may build a resistance network consisting of the
epoxy resistance in series with each of the infinite fin resistances, which are parallel to one another.

𝑇air

𝑅cn

𝑅cr

𝑇tc

𝑅ep
𝑇𝑠

From eqn. (4.51) and (4.56),

𝑅cr =
1

√𝑘𝐴ℎ𝑃
= 1
√(17)(28)𝜋2(0.00051)3/4

= 2533.5 K/W

𝑅cn =
1

√𝑘𝐴ℎ𝑃
= 1
√(23)(28)𝜋2(0.00051)3/4

= 2178.1 K/W

𝑅ep ≃
𝑡ep

𝑘ep(𝐷𝑤)(2𝐷𝑤)
= 0.0002
(0.5)(0.00051)(0.00102)

= 768.9 K/W

The temperature 𝑇tc may calculated from the resistance network in several ways. One way is to use
the so-called voltage divider relationship (see Problem 2.48):

𝑇𝑠 − 𝑇tc = (𝑇𝑠 − 𝑇air)
𝑅ep

𝑅ep + (𝑅−1cr + 𝑅−1cn )
−1

(𝑇𝑠 − 40) = (𝑇𝑠 − 20) 768.9

768.9 + [(2533.5)−1 + (2178.1)−1]−1
= (𝑇𝑠 − 20)(0.3963)

Solving,

𝑇𝑠 =
40 − (20)(0.3963)

1 − 0.3963 = 53.13°C
Thus, the measuring error (13 K) is about 40% of the overall temperature difference (33 K). The
thermocouple reading obtained this way is virtually meaningless.

A better arrangement would be to lay the wires onto the surface, rather than putting them
perpendicular to it, so that fin heat conduction in the wires will not cool the measuring junction.
Remember: thermocouples measure the temperature at the junction of the two dissimilar metals.
Temperature gradients in other parts of the wires do not matter.
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Problem 4.44 The resistor leads in Example 4.9 were assumed to be “infinitely long” fins.
What is the minimum length they each must have if they are to be modeled this way? What are
the effectiveness, 𝜀f, and efficiency, 𝜂f, of the wires? Discuss the meaning of your calculated
effectiveness and efficiency.

Solution In the example, the fins were considered to be long enough that tanh𝑚𝐿 ≃ 1when
calculating the fin thermal resistance from eqn. (4.57). We must make a judgment about how close
to 1 we need to be. If we desire no more than 1.00% error, then we need tanh𝑚𝐿 ⩾ 0.9900. A
calculation gives𝑚𝐿 ⩾ tanh−1 0.9900 = 2.647.

For the wires considered in Example 4.9

𝑚 =√
ℎ𝑃
𝑘𝐴 =

√
(23)𝜋(0.00062)

(16)𝜋(0.00062)2/4
=
√

(23)
(4)(0.00062)

= 96.30 m−1

so that
𝐿 ⩾ 2.647

96.30 = 0.02749 m = 27.5 mm
This length amounts to 44.3 wire diameters.

From eqn. (4.53), the fin efficiency is

𝜂f =
tanh𝑚𝐿
𝑚𝐿 = 0.990

2.647 = 0.3740

This value is significantly less than one because much of the fin is at a temperature closer to the
surrounding air temperature than is the base of the wire.

From eqn. (4.55), the fin effectiveness is

𝜀f = 𝜂f
fin surface area

fin cross-sectional area = (0.3740)𝜋(0.00062)(0.02749)
𝜋(0.00062)2/4

= (0.3740)(177.4) = 66.33

Thus, the wire manages to remove 66 times more heat than the base area of the wire would remove
if the same heat transfer coefficient applied to it. The reason is that the wire has a low resistance to
heat flow and can effectively lose heat over much of its surface area, which is 177 times larger than
the base area.

112-D
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



Problem 4.45 We use the following experiment to measure local heat transfer coefficients,
ℎ, inside pipes that carry flowing liquids. We pump liquid with a known bulk temperature through
a pipe which serves as an electric resistance heater, and whose outside is perfectly insulated. A
thermocouple measures its outside temperature. We know the volumetric heat release in the pipe
wall, ̇𝑞, from resistance and current measurements. We also know the pipe diameter, wall thickness,
and thermal conductivity.

Derive an equation for ℎ. (Remember that, since ℎ is unknown, a boundary condition of the third
kind by itself is not sufficient to find 𝑇(𝑟).) Then, nondimensionalize your result.

Solution For steady, radial heat conduction in the pipe wall with volumetric heating, the
heat conduction equation (eqn. (2.11) with eqn. (2.13)) can be simplified:

1
𝑟
𝜕
𝜕𝑟(𝑟

𝜕𝑇
𝜕𝑟 ) +

1
𝑟2�

�
��7
0

𝜕2𝑇
𝜕𝜙2 +�

�
��7
0

𝜕2𝑇
𝜕𝑧2 +

̇𝑞
𝑘 = 1

𝛼 �
�
���
0

𝜕𝑇
𝜕𝑡

Here, we have assumed that 𝑇𝑏 and ℎ vary only slowly in the 𝑧 direction. Integrating once:

𝑟𝜕𝑇𝜕𝑟 +
̇𝑞𝑟2

2𝑘 = 𝐶1

𝜕𝑇
𝜕𝑟 = −

̇𝑞𝑟
2𝑘 +

𝐶1
𝑟

Integrate again:

𝑇(𝑟) = −
̇𝑞𝑟2

4𝑘 + 𝐶1 ln 𝑟 + 𝐶2
We get 𝐶1 from energy conservation applied at 𝑟𝑖, with the edge at 𝑟𝑜 adiabatic and 𝑞𝑤 > 0 for heat
flow in the +𝑟 direction:

2𝜋𝑟𝑖𝑞𝑤 = − ̇𝑞𝜋(𝑟2𝑜 − 𝑟2𝑖 )
or

𝑞𝑤 = −
̇𝑞(𝑟2𝑜 − 𝑟2𝑖 )
2𝑟𝑖

𝑞𝑤 = −𝑘𝜕𝑇𝜕𝑟
|||
𝑟=𝑟𝑖

=
̇𝑞𝑟𝑖
2 − 𝑘𝐶1

𝑟𝑖
= −

̇𝑞(𝑟2𝑜 − 𝑟2𝑖 )
2𝑟𝑖

𝐶1 =
̇𝑞𝑟2𝑖
2𝑘 +

̇𝑞(𝑟2𝑜 − 𝑟2𝑖 )
2𝑘 =

̇𝑞𝑟2𝑜
2𝑘

We need 𝑇(𝑟𝑜) − 𝑇(𝑟𝑖), in which 𝐶2 cancels out:

𝑇(𝑟𝑜) − 𝑇(𝑟𝑖) = −
̇𝑞(𝑟2𝑜 − 𝑟2𝑖 )
4𝑘 + 𝐶1 ln

𝑟𝑜
𝑟𝑖

Now we can apply the 3rd-kind boundary condition, noting again that 𝑞𝑤 > 0 for heat flow in the
+𝑟-direction:

𝑞𝑤 = ℎ[𝑇𝑏 − 𝑇(𝑟𝑖)]

+
̇𝑞(𝑟2𝑜 − 𝑟2𝑖 )
2𝑟𝑖

= +ℎ[𝑇(𝑟0) − 𝑇𝑏 +
̇𝑞(𝑟2𝑜 − 𝑟2𝑖 )
4𝑘 −

̇𝑞𝑟2𝑜
2𝑘 ln

𝑟𝑜
𝑟𝑖
]
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ℎ =
̇𝑞(𝑟2𝑜 − 𝑟2𝑖 )

2𝑟𝑖[𝑇(𝑟0) − 𝑇𝑏 +
̇𝑞(𝑟2𝑜 − 𝑟2𝑖 )
4𝑘 −

̇𝑞𝑟2𝑜
2𝑘 ln

𝑟𝑜
𝑟𝑖
]

Answer
⟵−−−−−−−−−−−

We can now compute ℎ, since we know 𝑘, 𝑟𝑜, 𝑟𝑖, ̇𝑞, and the two measured temperatures.
Now we recall that we have nondimensionalized ℎ as the Biot number in situations where a

conduction resistance is in series with a convection resistance. With the pipe diameter 𝐷𝑖 = 2𝑟𝑖, we
write Bi = ℎ(2𝑟𝑖)/𝑘. We also see that the radius ratio appears naturally; call this 𝜌 ≡ 𝑟𝑜/𝑟𝑖. Putting
these groups into our result and rearranging

Bi =
(𝜌2 − 1)

[
𝑘[𝑇(𝑟0) − 𝑇𝑏]

̇𝑞𝑟2𝑖
+
(𝜌2 − 1)

4 −
𝜌2

2 ln 𝜌]

Answer
⟵−−−−−−−−−−−

The first group in the denominator is also nondimensional. This group is similar to 1/Γ in Exam-
ple 4.7. Note, however, that if ̇𝑞 → 0 then 𝑇(𝑟0)−𝑇𝑏 must also go to zero in a steady-state situation.
Similarly, if ̇𝑞 increases (with other things held fixed), then 𝑇(𝑟0) − 𝑇𝑏 must also increase.

Comment 1: Thin walled pipe. If we assume that 𝑡𝑤 = (𝑟𝑜 − 𝑟𝑖) ≪ 𝑟𝑖, the wall behaves
like a one-dimensional slab. Then 𝑇outside − 𝑇inside = ̇𝑞𝑡2𝑤/2𝑘 from Example 2.1. From energy
conservation, 𝑞𝑤 = ̇𝑞𝑡𝑤 = ℎ(𝑇inside − 𝑇𝑏), so that

̇𝑞𝑡𝑤 = ℎ(𝑇outside − ̇𝑞𝑡2𝑤/2𝑘 − 𝑇𝑏)
and so

ℎ =
̇𝑞𝑡𝑤

(𝑇outside − 𝑇𝑏 − ̇𝑞𝑡2𝑤/2𝑘)
Answer

⟵−−−−−−−−−−−

Comment 2: This experiment is best for studying fully developed turbulent flow inside the pipe
(see Chapter 7), for two reasons. First, in turbulent flow, the fluid away from the pipe wall is well
mixed and very close to 𝑇𝑏 over a large part of the cross-section, making the bulk temperature
measurement less difficult. Second, in fully developed flow, ℎ does not change in the streamwise
direction, so that the result will be less susceptible to axial variations. (Note, however, that 𝑇𝑏 will
always increase in the stream-wise direction if ̇𝑞 ≠ 0.)
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Problem 5.24 Eggs cook as their proteins denature and coagulate. An egg is considered to be
“hard-boiled” when its yolk is firm, which corresponds to a center temperature of 75°C. Estimate
the time required to hard-boil an egg if:

a) The minor diameter is 45 mm.
b) 𝑘 for the entire egg is about the same as for egg white. No significant heat release or change

of properties occurs during cooking.
c) ℎ between the egg and the water is 1000 W/m2K.
d) The egg has a uniform temperature of 20°C when it is put into simmering water at 85°C.

Solution We approximate the egg as a sphere of diameter 45 mm. From Table A.2, 𝑘egg =
0.56W/m2K and 𝛼egg = 1.37 × 10−7 m2/s. Then

Bi =
ℎ𝑟0
𝑘egg

= (1000)(0.045/2)
0.56 = 40.18

Additionally,
Θ = 𝑇 − 𝑇∞

𝑇𝑖 − 𝑇∞
= 75 − 85
20 − 85 = 0.1539

The cooking time should be long enough to use the one-term solution, since the temperature
change will have strongly affected the center of the egg by the time it is hard boiled. For this value
of Bi, interpolation of Table 5.2 gives us

̂𝜆1 ≃ 3.147 𝐴1 ≃ 1.991
The Fourier number is found with eqn. (5.42)

Θ = 𝐴1𝑓1 exp(− ̂𝜆21Fo) (*)
In this case, we need 𝑓1 for a sphere from Table 5.1, in the limit as 𝑟 → 0; but recall that

lim
𝑥→0

1
𝑥 sin𝑥 = 1

so that we will take 𝑓1 = 1. Solving eqn. (*) for Fo = 𝛼𝑡/𝑟20 :

Fo = −(3.147)−2 ln(0.15391.991 ) = 0.2585

Finally:

𝑡 = (0.2585)(0.045/2)2/(1.37 × 10−7) = 955.2 sec = 15 min 55 sec ≈ 16 min
Answer

⟵−−−−−−−
To check our answer, we can look at the first panel of Fig. 5.9. For this Bi and Θ, the Fourier

number will lie between 0.2 and 0.3, perhaps at 0.27 or so. The chart cannot provide the accuracy
of the one-term solution—as noted on page 216, for this value of Fo, the one-term solution has an
accuracy of about 0.1% relative to the exact result. Chart reading has an accuracy of 5–10%.

Comment: The cooking time will be less for smaller eggs; this diameter is somewhere between
a “large” and an “extra large” egg. The cooking time will be shorter if the water temperature is kept
higher (e.g., at a roiling boil). T Shortening the cooking time will lead to a softer, and eventually
“soft-boiled” egg. Overcooking the egg will lead to a greenish residue on the yolk, which results
from sulfur in the yolk combining with iron in the white to form harmless ferrous sulfide (Ref:
University of Nebraska–Lincoln.) Cooling the cooked egg in ice water helps prevent the green
tinge.
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Problem 5.27 A 0.5 cm diameter cylinder at 300°C is suddenly immersed in saturated water
at 1 atm. The water boils and ℎ = 10, 000 W/m2K. Find the centerline and surface temperatures
for the cases that follow. Hint: Evaluate Bi in each case before you begin.

a) After after 0.2 s if the cylinder is copper.
b) After after 0.2 s if the cylinder is Nichrome V. [𝑇sfc ≃ 216°C]
c) If the cylinder is Nichrome V, obtain the most accurate value of the temperatures after 0.04 s

that you can [𝑇sfc ≃ 259°C]

Solution
a) For pure copper at 300 °C, Table A.1 gives 𝑘copper = 384W/m⋅K. Then

Bi𝑟𝑜 =
ℎ𝑟𝑜
𝑘 = (104)(0.0025)

384 = 0.06510

For this low Biot number, we could use the lumped capacitance solution, but that won’t allow
us to compute the difference between the surface and centerline temperatures. Instead, we
can use the one-term solutions (Section 5.5). The temperatures are found with eqn. (5.42):

Θ = 𝑇 − 𝑇∞
𝑇𝑖 − 𝑇∞

= 𝐴1𝑓1 exp(− ̂𝜆21Fo)

For our value of Bi, linear interpolation of
Table 5.21 gives us

̂𝜆1 ≃ 0.3528 𝐴1 ≃ 1.016

The value of ̂𝜆1 is deceptively precise, since
the variation with Bi is not actually linear. In-
stead, we could iteratively solve the equation
for ̂𝜆1 in Table 5.1

̂𝜆1𝐽0( ̂𝜆1) = Bi𝑟𝑜𝐽1( ̂𝜆1)

with an online Bessel function calcula-
tor, such as https://keisan.casio.com/exec/
system/1180573474. The iteration converges
to ̂𝜆1 = 0.3579with four digit accuracy.2 An-
other approach would be to plot the values in
Table 5.2 and with a hand-fitted curve find
̂𝜆1 ≈ 0.36, as shown at right. The iteration is

of course most accurate.3

The Fourier number, with 𝛼copper ≃ 11.57 × 10−5 m2/s, is

Fo = 𝛼𝑡
𝑟2𝑜

= (11.57 × 10−5)(0.2)
(0.0025)2

= 3.70

1Older editions of AHTT give values for Bi = 0.05 and 0.1 only.
2Specifically, 𝐽0(0.3579) = 0.176100 and 𝐽1(0.3579) = 0.968232, and Bi𝑟𝑜𝐽1/𝐽0 = 0.3579.
3With that value of ̂𝜆1, we could also use the equation for 𝐴1 in Table 5.1 to recalculate, but the result turns out to

match what we already have because the relationship for 𝐴1 is nearly linear in this range of Bi.
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At the center, we need 𝑓1 for a cylinder from Table 5.1 for 𝑟 = 0, which is 𝐽0(0). A look-up
shows that 𝐽0(0) = 1. At the surface (𝑟 = 𝑟0), 𝑓1 = 𝐽0( ̂𝜆1) = 𝐽0(0.3579) = 0.9682. With
these values,

Θ = {
(1.016)(0.9682) exp[−(0.3579)2(3.70)] = 0.6124 at 𝑟 = 𝑟𝑜
(1.016)(1) exp[−(0.3579)2(3.70)] = 0.6325 at 𝑟 = 0

Solving for the temperatures, with 𝑇 = 𝑇∞ + Θ(𝑇𝑖 − 𝑇∞) and 𝑇∞ = 100°C for saturated
water,

𝑇 = {
100 + (300 − 100)(0.6124) = 223.5°C ≃ 224°C at 𝑟 = 𝑟𝑜
100 + (300 − 100)(0.6325) = 226.5°C ≃ 227°C at 𝑟 = 0

Answer
⟵−−−−−−−

As expected, the surface and center temperatures are very close (the lumped solution
would make them equal).

b) For Nichrome V at 300°C, Table A.1 gives 𝑘NiV = 15W/m⋅K. Then

Bi𝑟𝑜 =
ℎ𝑟𝑜
𝑘 = (104)(0.0025)

15 = 1.667

The Fourier number, with 𝛼NiV ≃ 0.26 × 10−5 m2/s, is

Fo = 𝛼𝑡
𝑟2𝑜

= (0.26 × 10−5)(0.2)
(0.0025)2

= 0.0832

This Fourier number is too low to use the one-term solutions, and this Biot number is too
high for a lumped solution. Instead, we can use the temperature-response chart, Fig. 5.8.
The author reads:

Θ𝑟=𝑟𝑜 ≃ 0.58 Θ𝑟=0 ≃ 0.98
Solving for the temperatures,

𝑇 = {
100 + (300 − 100)(0.58) = 216°C at 𝑟 = 𝑟𝑜
100 + (300 − 100)(0.98) = 296°C at 𝑟 = 0

Answer
⟵−−−−−−−

c) For 𝑡 = 0.04 s, the Fourier number is even lower—0.0166. Let us use the semi-infinite body
solution shown in Fig. 5.16 and given by eqn. (5.53). Here

𝛽 =
ℎ√𝛼𝑡
𝑘 =

104√(0.26 × 10−5)(0.04)
15 = 0.2150

From eqn. (5.53), and either Table 5.3 or an online erfc calculator
Θ = exp [(0.2150)2] erfc(0.2150) = 0.7971

so that

𝑇 = 𝑇∞ + (𝑇𝑖 − 𝑇∞)Θ = 100 + (300 − 100)(0.7971) = 259°C
Answer

⟵−−−−−−−
The center temperature is unchanged at this time.
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Problem 5.33   A lead bullet travels for 0.5 seconds within a shock wave that heats 

the air near the bullet to 300oC.  Approximate the bullet as a cylinder 0.8 mm in 

diameter.  What is its surface temperature at impact if h = 600 W/m2K and if the 

bullet was initially at 20oC?  What is its center temperature? 

Solution  The Biot number 600(0.004)/35 = 0.0685, so we can first try the lumped 

capacity approximation.  See eqn. (1.22): 

                      (Tsfc – 300)/(20 – 300) = exp(-t/T),  where T = mc/hA 

     So T = ρc(area)/h(circumf.) = 11,373(130)π(0.004)2/hπ(0.008) = 4.928 seconds 

    And  (Tsfc – 300)/(20 – 300) = exp(−0.5/4.928).    

                                                                    So Tsfc = 300 - 0.903(280) = 47.0oC  

     In accordance with the lumped capacity assumption,  

                                                                    47.0oC is also the center temperature. 

Now let us see what happens when we use the exact graphical solution, Fig. 5.8: 

      for   Fo = αt/ro
2 = 2.34(10−5)(0.5)/0.0042 = 0.731 and r/ro = 1, we get: 

               (Tsfc – 300)/(20 – 300) = 0.90,                                      So Tsfc = 48.0oC 

       And at r/ro = 0,   (Tctr – 300)/(20 – 300) = 0.92,                   &  Tctr  = 42.4oC 

We thus have good agreement within the limitations of graph-reading accuracy.  It 

also appears that the lumped capacity assumption is accurate within around 6 

degrees in this situation. 
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Problem 5.44 A long, 10 cm square copper bar is bounded by 260°C gas flows on two oppos-
ing sides. These flows impose heat transfer coefficients of 46 W/m2K. The two intervening sides
are cooled by natural convection to water at 15°C, with a heat transfer coefficient of 525 W/m2K.
What is the heat flow through the block and the temperature at the center of the block? Hint: This
could be a pretty complicated problem, but take the trouble to calculate the Biot numbers for each
side before you begin. What do they tell you? [34.7 °C ]

Solution
Let’s take the advice given in the hint. From Table A.1, the thermal conductivity of [pure] copper

at 400°C is 𝑘copper = 378W/m⋅K. Let 𝐿 = 5 cm. Then

Bigas side =
ℎ𝐿
𝑘 = (46)(0.05)

378 = 0.00608

Biwater side =
ℎ𝐿
𝑘 = (525)(0.05)

378 = 0.0694

The Biot number compares the internal conduction resistance to the external convection resistance.
For both cases, the internal conduction resistance is small relative to the convection resistance. In
addition, the temperature gradients inside the block will be small.

If we neglect the conduction resistance, the remaining resistances form a network as shown:

𝑇gas

𝑅gas

𝑅gas
𝑇Cu

𝑅water

𝑇water
𝑅water

Then,

𝑅gas =
1
ℎgas

= 1
46 = 0.02174 K-m2/W 𝑅water =

1
ℎwater

= 1
525 = 0.00190 K-m2/W

The equivalent resistance of two equal resistances in parallel is easily seen to be one half of either
resistance. Then the network simplifies:

𝑇gas

𝑅gas/2

𝑇Cu

𝑅water/2

𝑄
𝑇water

The total heat flow is

𝑄 =
𝑇gas − 𝑇water

𝑅gas/2 + 𝑅water/2
= 260 − 15
0.02174/2 + 0.00190/2 = 20.7 kW/m2 Answer

⟵−−−−−−−

The nearly uniform temperature of the copper is
𝑇Cu = 𝑇water + (𝑅water/2)(𝑄)

= 15 + (0.00190/2)(20.7 × 10+3) = 34.7 °C
Answer

⟵−−−−−−−
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Problem 5.46 A pure aluminum cylinder, 4 cm diam. by 8 cm long, is initially at 300°C.
It is plunged into a liquid bath at 40°C with ℎ = 500 W/m2K. Calculate the hottest and coldest
temperatures in the cylinder after one minute. Compare these results with the lumped capacity
calculation, and discuss the comparison.

Solution
We begin by looking up the thermal properties and computing the Biot and Fourier numbers.

From Table A.1, for pure aluminum at 300°C, 𝑘 = 234 W/m⋅K; at 20°C, 𝛼 = 9.61 × 10−5 m2/s.
The conductivity does not vary much with 𝑇 in this range. Then:

Bi𝑟𝑜 =
ℎ𝑟𝑜
𝑘 = (500)(0.02)

234 = 0.04274

Fo𝑟𝑜 =
𝛼𝑡
𝑟2𝑜

= (9.61 × 10−5)(60)
(0.02)2

= 14.42

The Biot number is certainly small enough for a lumped capacity solution. The Fourier number
is very large (≫ 1); for a higher Biot number (> 0.2 or so) this would imply that steady state had
been reached. However, for a very low Bi, that need not be the case.

Let us start with the lumped capacity solution. The lumped capacity solution requires us to
compute the time constant. With the density and heat capacity of aluminum, 𝜌 = 2707 kg/m3,
𝑐 = 905 J/kg-K

𝑻 =
𝜌𝑐𝑉
ℎ𝐴

= (2707)(905)(0.08)𝜋(0.02)2

(500)[2𝜋(0.02)(0.08) + 2𝜋(0.02)2]
= 39.20 s

Then, with eqn. (1.22),
𝑇 − 𝑇∞
𝑇𝑖 − 𝑇∞

= 𝑒−𝑡/𝑻 = 𝑒−60/39.20 = 0.2162

𝑇 = 40 + (300 − 40)(0.2162) = 96.20 °C
Answer

⟵−−−−−−−
The cylinder has clearly not finished cooling.

Because the cylinder has a finite length, a solution that is not lumped requires a product solution,
i.e., Fig. 5.27a with the product expression eqn (5.70b):

Θfinite cyl. =
𝑇(𝑟, 𝑧, 𝑡) − 𝑇∞

𝑇𝑖 − 𝑇∞
= Θinf. slab(𝑧/𝐿, Fo𝑠,Bi𝑠) × Θinf. cyl(𝑟/𝑟𝑜, Fo𝑐,Bi𝑐)

For the slab component, of thickness 2𝐿 = 8 cm:

Bi𝐿 =
ℎ𝐿
𝑘 = (500)(0.04)

234 = 0.08547 Fo𝐿 =
𝛼𝑡
𝐿2 =

(9.61 × 10−5)(60)
(0.04)2

= 3.604

The highest temperature is in the center, at (𝑟, 𝑧) = (0, 0). The lowest is on either outside corner,
at (𝑟, 𝑧) = (𝑟𝑜, 𝐿).

For the slab component, we can read the needed values from Fig. 5.7:

Θinf. slab(0, 3.604, 0.08547) ≃ 0.75 Θinf. slab(1, 3.604, 0.08547) ≃ 0.70

The temperature response charts for the cylinder do not extend to such high Fo; our only recourse
is to use the one-term solution. To obtain 𝑓1 and 𝐴1, one approach is to make an approximation by
interpolating the values in Table 5.2 (by linear interpolation, or more accurately, by plotting some
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of data in the table and hand-fitting a curve through it). A more accurate approach is to use the
equations in Table 5.1 with an online Bessel function calculator1 and to find a result iteratively.

For Bi𝑟𝑜 = 0.04274, an iterative solution leads to ̂𝜆1 = 0.2908 (to 4 digit accuracy), and
𝐴1 = 1.011. Then, with eqn. (5.42) and Fo𝑟𝑜 = 14.42:

𝑟 = 0 𝑓1 = 𝐽0(0) = 1 Θinf. cyl. = 𝐴1𝑓1 exp[−( ̂𝜆1)2Fo𝑟𝑜] = 0.2974

𝑟 = 𝑟0 𝑓1 = 𝐽0( ̂𝜆1) = 0.9890 Θinf. cyl. = 𝐴1𝑓1 exp[−( ̂𝜆1)2Fo𝑟𝑜] = 0.2941
We can now find Θfinite cyl.: so that

Θfinite cyl. = {
(0.70)(0.2941) = 0.206 at outside corners
(0.75)(0.2974) = 0.223 at center

Then, with 𝑇𝑖 − 𝑇∞ = (300 − 40) = 260°C,

𝑇finite cyl. = {
(0.206)(260) + 40 = 93.6°C at outside corners
(0.223)(260) + 40 = 98.0°C at center

Answer
⟵−−−−−−−

The lumped solution lies between the two values obtained from the multidimensional conduction
solution. This outcome is not surprising.

Comment: Our solution for Θinf. cyl. is significantly more accurate than that for Θinf. slab. If we
instead use the one-term solution for the slab and iterate the equation for 𝜆1 in Table 5.1, we find
𝜆1 ≃ 0.28825, 𝐴1 = 1.014, 𝑓1(0) = 1, 𝑓1(0.28825) = 0.9587, and then

Θinf. slab(0, 3.604, 0.08547) = 𝐴1𝑓1 exp[−( ̂𝜆1)2Fo𝐿] = 0.7516

Θinf. slab(1, 3.604, 0.08547) = 𝐴1𝑓1 exp[−( ̂𝜆1)2Fo𝐿] = 0.7206
The latter value is 3% higher than what the author got in reading the chart. These values result in

𝑇finite cyl. = {
(0.7206)(0.2941)(260) + 40 = 95.1°C at outside corners
(0.7516)(0.2974)(260) + 40 = 98.1°C at center

The lumped solution (96.2°C) still lies between these values, but is a bit closer to the outside corners
than to the center.

1Here’s a Bessel function calculator from Casio Computer Co.: https://keisan.casio.com/exec/system/1180573474.
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Problem 5.47 When Ivan cleaned his freezer, he accidentally put a large can of frozen juice
into the refrigerator. The juice can is 17.8 cm tall and has an 8.9 cm I.D. The can was at −15°C
in the freezer, but the refrigerator is at 4°C. The can now lies on a shelf of widely-spaced plastic
rods, and air circulates freely over it. Thermal interactions with the rods can be ignored. The
effective heat transfer coefficient to the can (for simultaneous convection and thermal radiation) is
8 W/m2K. The can has a 1.0 mm thick cardboard skin with 𝑘 = 0.2W/m⋅K. The frozen juice has
approximately the same physical properties as ice.

a) How important is the cardboard skin to the thermal response of the juice? Justify your answer
quantitatively.

b) If Ivan finds the can in the refrigerator 30 minutes after putting it in, will the juice have begun
to melt?

Solution
a) The thermal resistance of the cardboard is

𝑅cardboard =
𝑡
𝑘 = 0.001

0.2 = 0.005 K-m2/W

The thermal resistance from the exterior heat transfer coefficient is

𝑅ext =
1
ℎ
= 1
8 = 0.125 K-m2/W

Thus, 𝑅ext/𝑅cardboard = 25 ≫ 1, and the cardboard’s thermal resistance can be neglected.

b) We may treat the transient conduction problem as the intersection of a cylinder and a slab,
as shown in Fig. 5.27a, using eqn. (5.70b):

Θcan =
𝑇(𝑟, 𝑧, 𝑡) − 𝑇∞

𝑇𝑖 − 𝑇∞
= Θslab(𝑧/𝐿, Fo𝑠,Bi𝑠) × Θcyl(𝑟/𝑟𝑜, Fo𝑐,Bi𝑐)

From Table A.2, ice has 𝑘 = 2.215W/m⋅K and 𝛼 = 1.15 × 10−6m2/s. After 30 minutes, the
Fourier numbers of the slab and cylinder are:

Fo𝑠 =
𝛼𝑡
𝐿2 =

1.15 × 10−6(30)(60)
(0.178/2)2

= 0.261

Fo𝑐 =
𝛼𝑡
𝑟2𝑜

= 1.15 × 10−6(30)(60)
(0.089/2)2

= 1.045

The Biot numbers are:

Bi𝑠 =
ℎ𝐿
𝑘 = (8)(0.178/2)

2.215 = 0.3214

Bi𝑐 =
ℎ𝑟𝑜
𝑘 = (8)(0.089/2)

2.215 = 0.1607

Melting will occur first at the corners of the can, 𝑟 = 𝑟0 and 𝑧/𝐿 = ±1.
These Fourier numbers are large enough for us to use either the one-term solutions or the

charts Figs. 5.7 and 5.8. (Note that the charts can only be read to an accuracy of about ±5%,
so that different students may come up with slightly different numbers.) With the charts, the
author reads:

Θslab ≃ 0.84
Θcyl ≃ 0.78
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so that
Θcan = (0.84)(0.78) = 0.655

Then, with 𝑇𝑖 − 𝑇∞ = −14 − 4 = −18°C,
𝑇can = (0.655)(−18) + 4 = −7.8°C

Thus, the juice has not started melting when Ivan finds it.
Answer

⟵−−−−−−−

Comment 1: We could get better accuracy using the one-term solutions, but the can is a long
way from melting. A 5–10% shift in Θcan will not change the answer.

Comment 2: These Biot numbers are almost low enough to use a lumped capacitance solution.
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Problem 5.48 A cleaning crew accidentally switches off the heating system in a warehouse
one Friday night during the winter, just ahead of the holidays. When the staff return two weeks later,
the warehouse is quite cold. In some sections, moisture that condensed has formed a layer of ice 1
to 2 mm thick on the concrete floor. The concrete floor is 25 cm thick and sits on compacted earth.
Both the slab and the ground below it are now at 20°F. The building operator turns on the heating
system, quickly warming the air to 60°F. If the heat transfer coefficient between the air and the floor
is 15 W/m2K, how long will it take for the ice to start melting? Take 𝛼concr = 7.0 × 10−7 m2/s and
𝑘concr = 1.4W/m⋅K, and make justifiable approximations as appropriate.

Solution We have transient heat conduction from the air to the ice, concrete, and possibly
the ground below the concrete.

The ice layer is very thin in comparison to the concrete, so that it will contribute very little heat
capacitance or thermal resistance. To check the size of the ice resistance, with 𝑘ice = 2.215W/m⋅K,
we have

𝑅ice =
𝑡
𝑘 ≈ 0.002

2.215 = 0.000903 K-m2/W

𝑅conv =
1
ℎ
= 1
15 = 0.0667 K-m2/W

so that 𝑅conv/𝑅ice ≃ 74 ≫ 1. We can neglect the thermal resistance of the ice. Neglecting the heat
capacitance of the thin ice layer as well, we may simply treat the slab as if the ice were not present.

Because the concrete layer is thick and not highly conductive, we may attempt to treat it as a
semi-infinite body. We will need to check that the temperature change has not reached the bottom
of the concrete when the concrete surface reaches the melting temperature.

We can use Fig. 5.16 or eqn. (5.53). At the slab surface, 𝜁 = 0. We seek the time at which the
dimensionless temperature is

Θ = 𝑇 − 𝑇∞
𝑇𝑖 − 𝑇∞

= 32 − 60
20 − 60 = 0.700

From Fig. 5.16, this value corresponds to 𝛽 ≃ 0.35. Since the chart is not easy to ready up in that
corner, we can check the result with Table 5.3 and eqn. (5.53):

Θ = exp [(0.35)2] erfc(0.35) = 0.703

which is close enough (within 0.4%). Then, from 𝛽 = ℎ√𝛼𝑡/𝑘

𝑡 = [(0.35)(1.4)(15) ]
2 1
7.0 × 10−7 = 1524 sec = 25.4 min

Answer
⟵−−−−−−−

Now, let’s check whether the concrete remains a semi-infinite body after 25 minutes. We need
Θ for

𝛽𝜁 = ℎ𝑥
𝑘 = (15)(0.25)

1.4 = 2.68
Figure 5.16 shows that Θ ≃ 1, so that the bottom of the slab remains at the initial temperature. The
slab can indeed be modeled as a semi-infinite body.
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Problem 5.49 A thick wooden wall, initially at 25°C, is made of fir. It is suddenly exposed
to flames at 800°C. If the effective heat transfer coefficient for convection and radiation between
the wall and the flames is 80 W/m2K, how long will it take the wooden wall to reach an assumed
ignition temperature of 430°C?

Solution The maximum temperature of the wood is at the surface, 𝑥 = 0. The wall thickness
is not given, so we will treat it as semi-infinite and then check to see whether that assumption is
reasonable.

Referring to eqn. (5.53) or Fig. 5.16, 𝜁 = 𝑥/√𝛼𝑡 = 0 while 𝛽 = ℎ√𝛼𝑡/𝑘 is unknown until 𝑡 is
found. We seek the value of 𝑡 at which the surface reaches 430°C, so that

Θ =
𝑇ign − 𝑇∞
𝑇𝑖 − 𝑇∞

= 430 − 800
20 − 800 = 0.4774

Reading from Fig. 5.16, we find 𝛽 ≃ 0.8.
To get better accuracy, we could use eqn. (5.53):

Θ =
�
�
�>
0

erf 0 + exp(𝛽2) erfc(𝛽)
Then, using Table 5.3 for erfc, we could linearly interpolate a bit:

Guess 𝛽 erfc(𝛽) exp(𝛽2) erfc(𝛽)
0.8 0.25790 0.48740
0.9 0.20309 0.45653
0.85 0.23050 0.47472
0.84 0.23598 0.47787

At this point, we are exceeding the accuracy of the interpolation. An online erfc calculator gives
erfc(0.84) = 0.23486 and, with more iteration, erfc(0.8346) = 0.23788 resulting in Θ = 0.4774.
From either value, with 𝑘 = 0.12W/m⋅K, 𝛼 = 7.4 × 10−8 and ℎ = 80W/m2K,

𝑡 = 1
𝛼(

𝛽𝑘
ℎ
)
2
= {

21.5 sec 𝛽 = 0.84
21.2 sec 𝛽 = 0.8346

Answer
⟵−−−−−−−

How thickmust the wall be for our semi-infinite approximation to apply? Looking at Fig. 5.16, we
see that that the temperature remains at 𝑇𝑖 (Θ = 1) for 𝛽𝜁 = ℎ𝑥/𝑘 ≲ 3, or for 𝑥 ≲ 3(0.12)/(80) =
4.5 mm. Our approximation is valid for a wall that is at least this thick.
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Problem 5.50 Cold butter does not spread as well as warm butter. A small tub of whipped
butter bears a label suggesting that, before use, it be allowed to warm up in room air for 30 minutes
after being removed from the refrigerator. The tub has a diameter of 9.1 cm with a height of 5.6 cm,
and the properties of whipped butter are: 𝑘 = 0.125W/m⋅K, 𝑐𝑝 = 2520 J/kg⋅K, and 𝜌 = 620 kg/m3.
Assume that the tub’s plastic walls offer negligible thermal resistance, that ℎ = 10W/m2K outside
the tub. Ignore heat gained from the countertop below the tub. If the refrigerator temperature was
5°C and the tub has warmed for 30 minutes in a room at 20°C, find: the temperature in the center of
the butter tub, the temperature around the edge of the top surface of the butter, and the total energy
(in J) absorbed by the butter tub.

Solution
We can model the tub of butter as shown in Fig. 5.27a: the intersection of a cylinder of diameter

9.1 cm with a slab of thickness 2𝐿 = 2(5.6) = 11.2 cm. The slab thickness is twice the height of
the tub because the bottom of the tub is presumed to be adiabatic, which means that the bottom acts
as the centerplane of the slab for superposition purposes. We can use coordinates (𝑥, 𝑟) as shown
in the figure below.

With eqn. (5.70b):

Θtub =
𝑇(𝑟, 𝑧, 𝑡) − 𝑇∞

𝑇𝑖 − 𝑇∞
= Θslab(𝜉, Fo𝑠,Bi𝑠) × Θcyl(𝜌, Fo𝑐,Bi𝑐)

The thermal diffusivity of the whipped butter is 𝛼 = (0.125)/[(620)(2520)] = 8.00 × 10−8 m2/s.
After 30 minutes, the Fourier numbers of the slab and cylinder are:

Fo𝑠 =
𝛼𝑡
𝐿2 =

8.00 × 10−8(30)(60)
(0.056)2

= 0.04592

Fo𝑐 =
𝛼𝑡
𝑟2𝑜

= 8.00 × 10−8(30)(60)
(0.0455)2

= 0.06956

The Biot numbers are:

Bi𝑠 =
ℎ𝐿
𝑘 = (10)(0.056)

0.125 = 4.48

143-G
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



Bi𝑐 =
ℎ𝑟𝑜
𝑘 = (10)(0.0455)

0.125 = 3.64

These Fourier numbers are too small for us to use the one-term solutions. We can use the charts,
Figs. 5.7 and 5.8. (Note that the charts can only be read to an accuracy of about ±5%, so that
different students may come up with slightly different numbers.) The author reads:

Θslab ≃ 0.46 at top, 𝑥/𝐿 = 1 Θslab ≃ 0.95 in middle, 𝑥/𝐿 = 0.5
Θcyl ≃ 0.40 at edge, 𝑟/𝑟𝑜 = 1 Θcyl ≃ 0.97 at center, 𝑟/𝑟𝑜 = 0

so that

Θtub = {
(0.46)(0.4) = 0.184 at top outside edge
(0.95)(0.97) = 0.92 at center

Then, with 𝑇𝑖 − 𝑇∞ = (5 − 20) = −15°C,

𝑇tub = {
(0.184)(−15) + 20 = 17.2°C at top outside edge
(0.92)(−15) + 20 = 6.2°C at center

Answer
⟵−−−−−−−

To find the heat gain, we may use eqn. (5.72c):
Φtub = Φslab + Φcyl(1 − Φslab)

The respective values may be read from Fig. 5.10:
Φslab ≃ 0.10
Φcyl ≃ 0.28

so
Φtub = 0.10 + (0.28)(1 − 0.1) = 0.352

The heat gain is

−∫
𝑡

0
𝑄𝑑𝑡 = −𝜌𝑐𝑝𝑉(𝑇𝑖 − 𝑇∞)Φ

= −(620)(2520)[𝜋(0.0455)2(0.056)](5 − 20)(0.352)

= +3.00 kJ
Answer

⟵−−−−−−−
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Problem 5.51 A two-dimensional, 90° annular sector has an adiabatic inner arc, 𝑟 = 𝑟𝑖, and
an adiabatic outer arc, 𝑟 = 𝑟𝑜. The flat surface along 𝜃 = 0 is isothermal at 𝑇1, and the flat surface
along 𝜃 = 𝜋/2 is isothermal at 𝑇2. Show that the shape factor is 𝑆 = (2/𝜋) ln(𝑟𝑜/𝑟𝑖).

Solution Cylindrical coordinates are appropriate for this configuration. The shape factor
applies to steady-state heat conduction without heat generation. Further, our problem does not
depend on the axial coordinate, 𝑧. The heat equation, eqn. (2.11) with eqn. (2.13), can be simplified:

�
�
��
0

1
𝛼
𝜕𝑇
𝜕𝑡 =

1
𝑟
𝜕
𝜕𝑟(𝑟

𝜕𝑇
𝜕𝑟 ) +

1
𝑟2
𝜕2𝑇
𝜕𝜃2 +�

�
��7
0

𝜕2𝑇
𝜕𝑧2 +�

�
�7
0

̇𝑞
𝑘 ((*))

We may use separation of variables, assuming that 𝑇(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃):

𝑟 𝜕𝜕𝑟(𝑟
𝜕𝑇
𝜕𝑟 ) = −𝜕

2𝑇
𝜕𝜃2

𝑟
𝑅
𝑑
𝑑𝑟(𝑟

𝑑𝑅
𝑑𝑟 ) = − 1

Θ
𝑑2Θ
𝑑𝜃2

Since the left-hand side depends on 𝑟 only and the right-hand side on 𝜃 only, the only way for them
to be equal is if each take the same constant value. Call that value𝑚2:

𝑟
𝑅
𝑑
𝑑𝑟(𝑟

𝑑𝑅
𝑑𝑟 ) = 𝑚2 = − 1

Θ
𝑑2Θ
𝑑𝜃2

We can separate this into two ordinary differential equations:
𝑑
𝑑𝑟(𝑟

𝑑𝑅
𝑑𝑟 ) −

𝑚2

𝑟 𝑅 = 0

𝑑2Θ
𝑑𝜃2 +𝑚Θ = 0

Our situation looks pretty complicated! For 𝑚 ≠ 0, the first equation leads to Bessel functions
and the second produces signs and cosines. We’d get a so-called Fourier-Bessel series. But we
must also allow for the case𝑚 = 0. In that case, our equations are:

𝑑
𝑑𝑟(𝑟

𝑑𝑅
𝑑𝑟 ) = 0

𝑑2Θ
𝑑𝜃2 = 0

We easily find the solutions by integrating each equation twice:
𝑅(𝑟) = 𝐶1 ln 𝑟 + 𝐶2 = 0

Θ(𝜃) = 𝐶3𝜃 + 𝐶4
If we can meet the boundary conditions using only the solution for𝑚 = 0, we can simply omit the
solutions for𝑚 ≠ 0.

At 𝑟 = 𝑟𝑖 and 𝑟 = 𝑟0, the boundary is adiabatic, so:
𝜕𝑇
𝜕𝑟 = Θ(𝜃)𝐶1𝑟𝑖

= Θ(𝜃)𝐶1𝑟0
= 0

which is only possible for𝐶1 = 0. Thus, 𝑅(𝑟) = 𝐶2 is just a constant: this solution is independent of
r! We can take 𝐶2 = 1 without loss of generality because 𝐶2 simply multiplies the other unknown
constants.
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The boundary conditions at 𝜃 = 0 and 𝜃 = 𝜋/2 yield:

𝑇(𝑟, 0) = Θ(0)���
1

𝐶2 = 𝐶4 = 𝑇1 𝑇(𝑟, 𝜋/2) = Θ(𝜋/2)���
1

𝐶2 = 𝐶3𝜋/2 + 𝐶4 = 𝑇2
so 𝐶4 = 𝑇1 and 𝐶3 = (𝑇2 − 𝑇1)(2/𝜋). Collecting all this:

𝑇(𝑟, 𝜃) = 𝑇(𝜃 only) = (𝑇2 − 𝑇1)
𝜃
𝜋/2 + 𝑇1 (**)

To find the shape factor, we need to calculate the heat flow 𝑄 from one isothermal side to the
other. The gradient vector in cylindrical coordinates is

∇𝑇 = 𝜕𝑇
𝜕𝑟 𝐞𝑟 +

1
𝑟
𝜕𝑇
𝜕𝜃𝐞𝜃 +

𝜕𝑇
𝜕𝑧 𝐞𝑧

The heat flux in the 𝜃 direction is then

𝑞 = −𝑘1𝑟
𝜕𝑇
𝜕𝜃 = −𝑘(𝑇2 − 𝑇1)

2
𝜋𝑟

The total heat flow is found by integrating from 𝑟 = 𝑟𝑖 to 𝑟 = 𝑟0 along the line 𝜃 = 0:

𝑄 = −𝑘(𝑇2 − 𝑇1)∫
𝑟0

𝑟𝑖

2
𝜋𝑟 𝑑𝑟 = 𝑘(𝑇1 − 𝑇2)

2
𝜋 ln

𝑟0
𝑟𝑖

By definition, eqn. (5.66), 𝑄 = 𝑆𝑘Δ𝑇, so the shape factor we seek is:

𝑆 = 𝑄
𝑘Δ𝑇 = 2

𝜋 ln
𝑟0
𝑟𝑖

Answer
⟵−−−−−−−

Comment 1: The astute student may recognize at the outset that the temperature distribution
will not depend on 𝑟. In that case, the radius derivative in eqn. (*) will also be zero; integration
and application of the boundary conditions will lead quickly to eqn. (**).

Comment 2: In the case of a thin sector (𝑟𝑜 = 𝑟𝑖 + 𝑡 for 𝑡 ≪ 𝑟𝑖), curvature is unimportant. The
problem could be treated as a straight strip of length (𝜋/2)𝑟𝑖. A thermal resistance calculation
would quickly lead to an expression for 𝑆.

In addition, for 𝑡 ≪ 𝑟𝑖, ln(𝑟𝑜/𝑟𝑖) = ln(1 + 𝑡/𝑟𝑖) ≃ 𝑡/𝑟𝑖. Then our result becomes 𝑆 ≃ 2𝑡/(𝜋𝑟𝑖).
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Problem 5.52 Suppose that )∞(C) is the time-dependent temperature of the environment
surrounding a convectively-cooled, lumped object.

a) When )∞ is not constant, show that eqn. (1.19) leads to
3

3C
() − )∞) +

() − )∞)
T

= −3)∞
3C

where the time constant T is defined as usual.
b) If the object’s initial temperature is )8, use either an integrating factor or Laplace transforms

to show that ) (C) is

) (C) = )∞(C) +
[
)8 − )∞(0)

]
4−C/T − 4−C/T

∫ C

0
4B/T

3

3B
)∞(B) 3B

Solution
a) From eqn. (1.19) for constant 2, with )∞(C) not constant:

−ℎ�() − )∞) =
3

3C

[
d2+ () − )ref)

]
= <2

3)

3C

= <2
3 () − )∞)

3C
+ <2

3)∞
3C

Setting T ≡ <2
/
ℎ� and rearranging, we obtain the desired result:

3

3C
() − )∞) +

() − )∞)
T

= −3)∞
3C

(1)

b) The integrating factor for this first-order o.d.e. is 4C/T . Multiplying through and using the
product rule, we have

3

3C

[
4C/T () − )∞)

]
= −4C/T 3)∞

3C

Next integrate from C = 0 to C:

4C/T () − )∞) −
[
)8 − )∞(0)

]
= −

∫ C

0
4B/T

3)∞
3B

3B

Multiplying through by 4−C/T and rearranging gives the stated result:

) (C) = )∞(C) +
[
)8 − )∞(0)

]
4−C/T − 4−C/T

∫ C

0
4B/T

3)∞
3B

3B

Alternate approach: To use Laplace transforms, we first simplify eqn. (1) by defining
H(C) ≡ ) − )∞ and 5 (C) ≡ −3)∞/3C:

3H

3C
+ H

T
= 5 (C)

Next, we apply the Laplace transform ℒ{..}, with ℒ{H(C)} = . (?) and ℒ{ 5 (C)} = � (?):

ℒ

{ 3H
3C

}
+ℒ

{ H
T

}
= ℒ{ 5 (C)}

?. (?) − H(0) + 1
T

. (?) = � (?)
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Solving for . (?):
. (?) = 1

? + 1/T H(0) + 1
? + 1/T � (?)

Now take the inverse transform, ℒ−1{..}:

ℒ
−1{. (?)} = ℒ

−1
{ 1
? + 1/T

}
H(0) +ℒ

−1
{ 1
? + 1/T � (?)

}
(2)

With a table of Laplace transforms, we find

ℒ
−1
{ 1
? + 1/T︸    ︷︷    ︸
≡� (?)

}
= 4−C/T︸︷︷︸

≡6(C)

and with � (?) and 6(C) defined as shown, the last term is just a convolution integral

ℒ
−1
{ 1
? + 1/T � (?)

}
= ℒ

−1{� (?)� (?)} =
∫ C

0
6(C − B) 5 (C) 3B

Putting all this back into eqn. (2), we find

H(C) = 4−C/T H(0) +
∫ C

0
4−(C−B)/T 5 (C) 3B

and putting back the original variables in place of H and 5 , we have at length obtained:

) (C) = )∞(C) +
[
)8 − )∞(0)

]
4−C/T − 4−C/T

∫ C

0
4B/T

3)∞
3B

3B

Extra credit. State which approach is more straightforward!
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Problem 5.53 Use the equation derived in Problem 5.52b to verify������eqn. (5.13) eqn. (5.14).

Solution We have 𝑇∞(𝑡) = 𝑇𝑖 + 𝑏𝑡. Substituting into the result of Problem 5.52b:

𝑇(𝑡) = 𝑇∞(𝑡) + [𝑇𝑖 − 𝑇∞(0)] 𝑒−𝑡/𝑻 − 𝑒−𝑡/𝑻∫
𝑡

0
𝑒𝑠/𝑻 𝑑𝑑𝑠[𝑇𝑖 + 𝑏𝑠] 𝑑𝑠

= 𝑇𝑖 + 𝑏𝑡 + [𝑇𝑖 − 𝑇𝑖] 𝑒−𝑡/𝑻 − 𝑒−𝑡/𝑻∫
𝑡

0
𝑒𝑠/𝑻𝑏 𝑑𝑠

= 𝑇𝑖 + 𝑏𝑡 − 𝑏𝑻𝑒−𝑡/𝑻(𝑒𝑡/𝑻 − 1)

= 𝑇𝑖 + 𝑏𝑡 − 𝑏𝑻(1 − 𝑒−𝑡/𝑻)
which is eqn. (5.14).
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Problem 5.54 Suppose that a thermocouple with an initial temperature 𝑇𝑖 is placed into an
airflow for which its Bi ≪ 1 and its time constant is 𝑻. Suppose also that the temperature of the
airflow varies harmonically as 𝑇∞(𝑡) = 𝑇𝑖 + Δ𝑇 cos (𝜔𝑡).

a) Use the equation derived in Problem 5.52b to find the temperature of the thermocouple,
𝑇tc(𝑡), for 𝑡 > 0. (If you wish, note that the real part of 𝑒𝑖𝜔𝑡 is ℜ𝔢{𝑒𝑖𝜔𝑡} = cos𝜔𝑡 and use
complex variables to do the integration.)

b) Approximate your result for 𝑡 ≫ 𝑻. Then determine the value of 𝑇tc(𝑡) for 𝜔𝑻 ≪ 1 and for
𝜔𝑻 ≫ 1. Explain in physical terms the relevance of these limits to the frequency response
of the thermocouple—its ability to follow various frequencies.

c) If the thermocouple has a time constant of 𝑻 = 0.1 sec, estimate the highest frequency
temperature variation that it will measure accurately.

Solution
a) The integration can be done in several ways. We’ll use complex variables:

𝑇(𝑡) = 𝑇∞(𝑡) + [𝑇𝑖 − 𝑇∞(0)] 𝑒−𝑡/𝑻 − 𝑒−𝑡/𝑻∫
𝑡

0
𝑒𝑠/𝑻 𝑑𝑑𝑠𝑇∞(𝑠) 𝑑𝑠

= 𝑇∞(𝑡) − Δ𝑇 𝑒−𝑡/𝑻 − Δ𝑇𝑒−𝑡/𝑻∫
𝑡

0
𝑒𝑠/𝑻ℜ𝔢{ 𝑑𝑑𝑠𝑒

𝑖𝜔𝑠} 𝑑𝑠

= 𝑇∞(𝑡) − Δ𝑇 𝑒−𝑡/𝑻 − Δ𝑇𝑒−𝑡/𝑻ℜ𝔢{∫
𝑡

0
𝑒𝑠/𝑻𝑖𝜔𝑒𝑖𝜔𝑠 𝑑𝑠}

= 𝑇∞(𝑡) − Δ𝑇 𝑒−𝑡/𝑻 − Δ𝑇𝑒−𝑡/𝑻ℜ𝔢{𝑖𝜔[𝑒
(1/𝑻+𝑖𝜔)𝑡 − 1
1/𝑻 + 𝑖𝜔 ]}

…and now a bunch of algebra…

= 𝑇∞(𝑡) − Δ𝑇 𝑒−𝑡/𝑻 − Δ𝑇 ℜ𝔢{𝑖𝜔[(𝑒𝑖𝜔𝑡 − 𝑒−𝑡/𝑻)( 1/𝑻 − 𝑖𝜔
𝑻−2 + 𝜔2)]}

= 𝑇∞(𝑡) − Δ𝑇 𝑒−𝑡/𝑻 − Δ𝑇𝜔
𝑻−2 + 𝜔2 [− sin(𝜔𝑡)/𝑻 + 𝜔 cos(𝜔𝑡) − 𝜔𝑒−𝑡/𝑻]

= 𝑇∞(𝑡) − Δ𝑇 𝑒−𝑡/𝑻 − Δ𝑇
(𝜔𝑻)−2 + 1[

cos(𝜔𝑡) − sin(𝜔𝑡)/(𝜔𝑻) − 𝑒−𝑡/𝑻]

= 𝑇∞(𝑡) + Δ𝑇 𝑒−𝑡/𝑻[ 1
(𝜔𝑻)−2 + 1

− 1] − Δ𝑇
(𝜔𝑻)−2 + 1[

cos(𝜔𝑡) − sin(𝜔𝑡)/(𝜔𝑻)]

= 𝑇∞(𝑡) − Δ𝑇 𝑒−𝑡/𝑻[ 1
1 + (𝜔𝑻)2 ]

− Δ𝑇 (𝜔𝑻)2

1 + (𝜔𝑻)2 [
cos(𝜔𝑡) − sin(𝜔𝑡)/(𝜔𝑻)]

We could stop here…or we can use a trig identity to combine the sine and cosine:

𝐴 cos𝜙 − 𝐵 sin𝜙 = 𝐶 cos(𝜙 + 𝛼)

for 𝐶2 = 𝐴2 + 𝐵2 and tan(𝐵/𝐴) = 𝛼. With 𝐴 = 1 and 𝐵 = 1/(𝜔𝑻), 𝛼 = tan−1(1/𝜔𝑻) and:

𝑇(𝑡) = 𝑇∞(𝑡) − Δ𝑇 𝑒−𝑡/𝑻[ 1
1 + (𝜔𝑻)2 ]

− Δ𝑇
√

(𝜔𝑻)2
1 + (𝜔𝑻)2

cos(𝜔𝑡 + 𝛼)
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

Measurement error

Answer
⟵−−− (*)
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b) The second term on the right-hand side of eqn. (*) represents the transient response of the
thermocouple, which tends to zero for 𝑡 ≫ 𝑻. We are left with the steady response to the
oscillating air temperature:

𝑇(𝑡) = 𝑇∞(𝑡) − Δ𝑇
√

(𝜔𝑻)2
1 + (𝜔𝑻)2

cos(𝜔𝑡 + 𝛼) (**)

For low frequencies (with a period much longer than the time constant of the thermocouple),
𝜔𝑻 ≪ 1 and 𝛼 → 𝜋/2. The result reduces to

𝑇(𝑡) ≃ 𝑇∞(𝑡)
In this range of frequencies, the thermocouple measures the air temperature accurately.

For high frequencies (with a period much shorter than the time constant of the thermo-
couple), 𝜔𝑻 ≫ 1 and 𝛼 → 0. The result becomes

𝑇(𝑡) → 𝑇∞(𝑡) − Δ𝑇 cos(𝜔𝑡) = 𝑇𝑖
For these very high frequencies, the air temperature fluctuates too rapidly for the thermocou-
ple to follow, and the measured temperature is simply the average air temperature.

c) To measure accurately, we’d like the last term in eqn. (**) to be small. For no more than
a 1% error, we would need 𝜔𝑻 ⩽ 0.01. Therefore, we need frequencies low enough that
𝜔 ⩽ 0.01/𝑻, and with 𝜔 = 2𝜋𝑓 and 𝑻 = 0.1 sec, this leads to

𝑓 ⩽ 0.01
2𝜋(0.1)

= 0.0159 Hz

This frequency corresponds to a maximum period of air temperature change of about 63 sec.

Comment 1: For measurements of fluctuating air temperature in turbulent flow, much higher
frequency response is needed, generally in the range of 1 kHz or more. Very short sensor time
constants are required, and these can be obtained using micrometer diameter platinum wires. See:
J. Haugdahl and J.H. Lienhard V, “A low-cost, high-performance DC cold-wire bridge,” J. Phys.
E: Sci. Instr., Vol. 21, 1988, pp.167-170, doi:10.1088/0022-3735/21/2/008. (PDF file)

Comment 2: The thermocouple is a first-order linear system, and the fluctuating air temperature
provides harmonic forcing. In a system dynamics class, these results might be presented using a
Bode plot for the amplitude response. To find the phase shift (which is not 𝛼), the fluctuating part
of 𝑇∞(𝑡) must be combined with the last term in eqn. (*); this phase shift is 0° at low frequency,
increasing to a 90° phase lag at high frequency.
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Problem 5.55 A particular tungsten lamp filament has a diameter of 100 µm and sits inside
a glass bulb filled with inert gas. The effective heat transfer coefficient for convection and radiation
is 750 W/m⋅K and the electrical current is at 60 Hz. How much does the filament’s surface
temperature fluctuate if the gas temperature is 200°C and the average wire temperature is 2900°C?

Solution
We may refer to Fig. 5.12 to find the answer once we calculate Bi and 𝜓. The tungsten wire

is at a higher temperature than the data in Table A.1: 𝑘 = 114 W/m⋅K (at 1000°C) and 𝛼 =
6.92×10−5 m2/s (at 20°C). We can do better by using the literature [1]. At 3200K, 𝑘 = 91W/m⋅K.
If we take 𝜌𝑐𝑝 to be only weakly temperature dependent, we can estimate 𝛼 by adjusting the 20°C
value 𝑘 = 178W/m⋅K to the 3200 K value: 𝛼 ≈ 6.92 × 10−5(91/178) = 3.54 × 10−5 m2/s.

Bi = ℎ𝛿
𝑘 = (750)(50 × 10−6)

91 = 4.12 × 10−4

𝜓 = 𝜔𝛿2
𝛼 = 2𝜋(60)(50 × 10−6)2

3.54 × 10−5 = 0.0266
With these values, we can read from Fig. 5.12:

𝑇max − 𝑇ave
𝑇ave − 𝑇∞

≈ 0.02

so that
𝑇max ≈ (0.02)(2900 − 200) + 2900 = 2954 °C

Answer
⟵−−−−−−−

References. [1] R.W. Powell, C.Y. Ho, and P.E. Liley, Thermal conductivity of selected materials.
Washington, D.C., U.S. Dept. Commerce, National Bureau of Standards, 1966, Figure 13.
https://permanent.fdlp.gov/LPS112783/NSRDS-NBS-8.pdf
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Problem 5.56 The consider the parameter 𝜓 in eqn. (5.41).
a) If the timescale for heat to diffuse a distance 𝛿 is 𝛿2/𝛼, explain the physical significance of 𝜓

and the consequence of large or small values of 𝜓.
b) Show that the timescale for the thermal response of a wire of radius 𝛿 with Bi ≪ 1 is

𝜌𝑐𝑝𝛿/(2ℎ). Then explain the meaning of the new parameter 𝜙 = 𝜌𝑐𝑝𝜔𝛿/(4𝜋ℎ).
c) When Bi ≪ 1, is 𝜙 or 𝜓 a more relevant parameter?

Solution
a) The definition of 𝜓 is 𝜓 = 𝜔𝛿2/𝛼. Physically, 𝜓 is a ratio of timescales:

𝜓 = 𝛿2/𝛼
1/𝜔 = 2𝜋 timescale for heat diffusion over distance 𝛿

period of oscillation of heat generation
with 𝜔 = 2𝜋𝑓. When 𝜓 ≪ 1, the heating power oscillates on a timescale much greater than
the time required for heat to diffuse over 𝛿, with the result that the surface temperature of the
object will not vary much. When 𝜓 ≫ 1, heat diffuses to the surface much faster than the
heat power varies, so that the surface temperature will change as the power fluctuates.

b) For low Biot number, the timescale for an object’s temperature change is simply the lumped
capacitance time constant. From eqn (1.23)

𝑻 = 𝑚𝑐 ( 1
ℎ𝐴

)

For a cylindrical wire of radius 𝛿, per unit length, 𝐴 = 2𝜋𝛿 and 𝑚 = 𝜌𝜋𝛿2. Substituting
these values

𝑻 =
𝜌𝑐𝛿
2ℎ

The proposed parameter 𝜙 = 𝜌𝑐𝑝𝜔𝛿/(4𝜋ℎ), with 𝑓 = 𝜔/2𝜋 = 1/period, has this physical
meaning:

𝜙 =
𝜌𝑐𝑝𝛿/(2ℎ)
2𝜋/𝜔 =

lumped capacitance time scale
period of oscillation

c) When Bi ≪ 1, 𝜙 is clearly the more relevant parameter. In this limit, temperature gradients
within the wire are negligible.

From Figs. 5.11 and 5.12, we see that 𝜓 alone predicts the temperature deviation for
Bi ≫ 1. We expect that the deviation would be independent of Bi in the lumped limit, for
Bi ≪ 1, but that behavior does not appear when 𝜓 is used as a parameter. The curves would
need to be replotted in terms of 𝜙 to show independence from Bi at low Bi.
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Problem 5.57 Repeat the calculations of Example 5.2 using the one-term solutions. Discuss
the differences between your solution and the numbers in the example. Which provides greater
accuracy?

Solution
The one-term equations that we need are eqns. (5.42) and (5.43):

Θ = 𝐴1𝑓1(𝑟/𝑟𝑜) exp(− ̂𝜆21Fo) Φ = 1 − 𝐷1 exp(− ̂𝜆21Fo)
From Example. 5.2, Bi𝑟𝑜 = 0.498. Referring to Table 5.2, we read the values for Bi𝑟𝑜 = 0.50:

̂𝜆1 = 1.16556 𝐴1 = 1.1441 𝐷1 = 0.9960
At the center of the apples, 𝑟/𝑟𝑜 = 0. For 𝑓1(0) we may refer to Table 5.1, noting that

lim
𝑥→0

1
𝑥 sin𝑥 = 1

so that 𝑓1(0) = 1.
After 1 hr, from Example 5.2, Fo𝑟𝑜 = 0.208, So

Θ = (1.1441)(1) exp[−(1.16556)2(0.208)] = 0.8625
which is 2.7% greater than the value found in Example 5.2. From the definition of Θ

𝑇center = (0.8625)(30 − 5)°C + 5°C = 26.6°C
Answer

⟵−−−−−−−
When the centers reach 10°C, from Example 5.2, Θ = 0.20, so

0.20 = (1.1441)(1) exp[−(1.16556)2Fo𝑟𝑜]
which can be solved for

Fo𝑟𝑜 = 1.284 ≃ 1.28
which is 1.4% less than the value found in Example 5.2, so that

𝑡 = 1.28(997.6)(4180)(0.0025)
0.603 = 22, 129 s = 6 hr 9 min

Answer
⟵−−−−−−−

With Fo𝑟𝑜 = 1.284, we find

Φ = 1 − (0.9960) exp[−(1.16556)2(1.284)] = 0.8259
We can use this value of Φ to repeat the calculation in Example 5.2:

12∫
𝑡

0
𝑄𝑑𝑡 = 12(997.6)(4180)(43𝜋(0.05)

3)(25)(0.8259) = 541 kJ
Answer

⟵−−−−−−−

This value is about 0.7% greater than was calculated in Example 5.2.

Accuracy: The charts can be read to a precision of only about ±5% (although the numerical
calculations made when plotting the charts were very precise.) The one-term solutions allow many
digits to be computed, but one must also consider the approximation made in reducing the Fourier
series solutions to a single term. As noted on page 216 of the next, the one-term solution for a
sphere is accurate to better than 0.1% for Fo ⩾ 0.28; that means that the answers for the last two
questions are much more accurate with the one-term series than the chart solution. For the first
answer (with Fo = 0.20), the one-term solution will be somewhat less accurate (since Fo < 0.28),
but likely still much more accurate that reading the chart.
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Problem 5.58 The lumped-capacity solution, eqn. (1.22) depends on 𝑡/𝑻. (a) Write 𝑡/𝑻 in
terms of Bi and Fo for a slab, a cylinder, and a sphere [slab: 𝑡/𝑻 = Bi𝐿Fo𝑙]. (b) For a sphere
with Fo = 1, 2, and 5, plot the lumped-capacity solution as a function of Bi on semilogarithmic
coordinates. How do these curves compare to those in Fig. 5.9?

Solution
a) For a very large slab of thickness 𝐿 and area 𝐴 (neglecting edges)

𝑡
𝑻 = 𝑡ℎ𝐴

𝜌𝑐𝐿𝐴 = 𝑡ℎ
𝜌𝑐𝐿 = 𝛼𝑡

𝐿2
ℎ𝐿
𝑘 �

�
��7
1

𝑘
𝜌𝑐𝛼 = Fo𝐿Bi𝐿

For a very long cylinder of radius 𝑟𝑜 and length 𝐿 (neglecting ends)

𝑡
𝑻 =

𝑡ℎ(2𝜋𝑟𝑜𝐿)
𝜌𝑐𝜋𝑟2𝑜 𝐿

= 2𝑡ℎ
𝜌𝑐𝑟𝑜

= 2𝛼𝑡
𝑟2𝑜
ℎ𝑟𝑜
𝑘 �

�
��7
1

𝑘
𝜌𝑐𝛼 = 2 Fo𝑟𝑜Bi𝑟𝑜

For a sphere of radius 𝑟𝑜

𝑡
𝑻 =

𝑡ℎ(4𝜋𝑟2𝑜 )
𝜌𝑐𝜋(4/3)𝜋𝑟3𝑜

= 3𝑡ℎ
𝜌𝑐𝑟𝑜

= 3𝛼𝑡
𝑟2𝑜
ℎ𝑟𝑜
𝑘 �

�
��7
1

𝑘
𝜌𝑐𝛼 = 3 Fo𝑟𝑜Bi𝑟𝑜

b) The lumped solution is plotted with solid curves in the figure below. The comparison can
be made in various ways. In the plot, the curves from Fig. 5.9 are shown in dashed lines for
𝑟/𝑟𝑜 = 0 and in dotted lines for 𝑟/𝑟𝑜 = 1. The results from Fig. 5.9 and the lumped solution
are similar in all cases, but almost identical for 𝑟/𝑟𝑜 = 1. The disagreement is greater for
higher Bi and lower Fo, as expected, and the most noticeably different case is for for 𝑟/𝑟𝑜 = 0
(the center) when Fo = 1 and Bi ≳ 0.1.

The reason that the curves are generally similar is that the lumped solution assumes a
uniform temperature through the whole sphere, a condition that best applies for small Biot
and large Fourier number.

0.01 0.1 1
0.0

0.5

1.0

Fo = αt
𝗋𝟤𝗈

Fo = 5 2 1

Biot number, Bi

Θ
=
𝖳
−
𝖳 ∞

𝖳 𝗂
−
𝖳 ∞

Comment: If the curves for Fo = 0.1 are plotted, no similarity at all is observed (see figure
on next page). For small Fourier numbers, the temperature at the surface and the center are
very different unless Bi ≲ 0.1.
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0.0

0.5

1.0

Fo = αt
𝗋𝟤𝗈

Fo = 5 2 1 0.1

0.1

0.1

Biot number, Bi

Θ
=
𝖳
−
𝖳 ∞

𝖳 𝗂
−
𝖳 ∞
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Problem 5.59 Use the lumped-capacity solution to derive an equation for the heat removal,
Φ, as a function of 𝑡. Then put this equation in terms of Fo and Bi for a cylinder. Plot the result on
semilogarithmic coordinates as a function of Bi for Fo = 25, 10, 5, and 2. Compare these curves
to Fig. 5.10b.

Solution
By definition, eqn. (5.37),

Φ =
∫

𝑡

0
𝑄𝑑𝑡

𝜌𝑐𝑉(𝑇𝑖 − 𝑇∞)
For a lumped object, with eqn. (1.22),

𝑄 = ℎ𝐴[𝑇(𝑡) − 𝑇∞] = ℎ𝐴(𝑇𝑖 − 𝑇∞) exp(−𝑡/𝑻)
so that, with 𝑻 = 𝜌𝑐𝑉/ℎ𝐴,

Φ = ℎ𝐴
𝜌𝑐𝑉 ∫

𝑡

0
exp(−𝑡/𝑻) 𝑑𝑡 = 1

𝑻 𝑻 [1 − exp(−𝑡/𝑻)] = 1 − exp(−𝑡/𝑻)

For a cylinder that is very long (so that we neglect the end surfaces),

𝑡
𝑻 =

𝑡ℎ(2𝜋𝑟𝑜𝐿)
𝜌𝑐𝜋𝑟2𝑜 𝐿

= 2𝑡ℎ
𝜌𝑐𝑟𝑜

= 2𝛼𝑡
𝑟2𝑜
ℎ𝑟𝑜
𝑘 �

�
��7
1

𝑘
𝜌𝑐𝛼 = 2 Fo𝑟𝑜Bi𝑟𝑜

Thus:
Φ = 1 − exp(−𝑡/𝑻) = 1 − exp(−2Bi𝑟𝑜Fo𝑟𝑜)

Answer
⟵−−−−−−−

This equation is plotted below using solid curves. The curves from Fig. 5.10b are shown as
dotted curves. The agreement is excellent overall. For smaller Fo and higher Bi, some differences
begin to appear. When the Biot number is higher, the internal thermal resistance is no longer
negligible (the internal temperature gradients increase), so that the lumped model overestimates
the amount of heat removal at a given time (at a given Fo).

0.001 0.01 0.1 1
0.0

0.5

1.0

5

Fo = 𝟤𝟧 10 5 2

Fo = αt
𝗋𝟤𝗈

Biot number, Bi ≡ 𝗁𝗋𝗈/𝗄

Φ
=

∫
𝗍

𝟢
𝖰
𝖽𝗍

ρ
𝖼𝖵
(𝖳

𝗂−
𝖳 ∞
)

Comment: The agreement will be worse for small Fo. As seen in Fig. 5.10b, Fourier numbers
less than 1 may never reach Φ ≃ 1 — or even come close to Φ = 1. The lumped solution will
always reach Φ ≃ 1 if Bi is large enough, but that is not accurate for high Bi.
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Overall, the one-term calculations appear to have improved the accuracy by 1–3%. The reader
should keep in mind that the model used for cooling the apples is far more approximate: apples are
not spheres, the heat transfer coefficient may be uncertain by ±20% (or more), and so on.
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Problem 5.60 Write down the one-term solutions for Θ for a slab with Bi = {0.01,
0.05, 0.1, 0.5, 1}. Compare these to the corresponding lumped capacity equation (see Problem 5.58).
Ostrogorsky [5.8] has shown that ̂𝜆1 ≃ √𝑚 ⋅ Bi for Bi ⩽ 0.1, where 𝑚 = 1 for a slab, 2 for a
cylinder, and 3 for a sphere. How does that formula compare to your results?

Solution
In Problem 5.58, we found

𝑡
𝑻 = Bi𝐿Fo𝐿

for a slab, and so the lumped solution may be written
Θ = exp(−Bi𝐿Fo𝐿)

The one-term equation is eqn. (5.42)
Θ = 𝐴1𝑓1(𝑟/𝑟𝑜) exp(− ̂𝜆21Fo𝐿)

with 𝑓1 from Table 5.1
𝑓1 = cos(𝜆1𝑥/𝐿)

The needed values 𝐴1 and ̂𝜆1 may be taken from Table 5.2 as below, where the constants in Θ have
been rounded to 3 digits.

Bi𝐿 ̂𝜆1 𝐴1 Θ √Bi𝐿
0.01 0.09983 1.0017 (1.00) cos(0.0998𝑥/𝐿) exp(−0.00997 Fo𝐿) 0.1000
0.05 0.22176 1.0082 (1.01) cos(0.222𝑥/𝐿) exp(−0.0492 Fo𝐿) 0.2236
0.10 0.31105 1.0161 (1.02) cos(0.311𝑥/𝐿) exp(−0.0968 Fo𝐿) 0.3162
0.50 0.65327 1.0701 (1.07) cos(0.653𝑥/𝐿) exp(−0.427 Fo𝐿) 0.7071
1.00 0.86033 1.1191 (1.12) cos(0.860𝑥/𝐿) exp(−0.740 Fo𝐿) 1.000

The coefficient of Fo𝐿 in the expression for Θ is very close to Bi𝐿 for Bi𝐿 ⩽ 0.1 (within 3.2% or
less). The cosine factor can be studied with a Taylor expansion of cos 𝑧:

cos 𝑧 = 1 − 𝑧2
2 +⋯

where 𝑧 = ̂𝜆1𝑥/𝐿. For Bi𝐿 ⩽ 0.1, cos(𝜆1𝑥/𝐿) ≃ 1 with an error of 4.8% or or less. Thus, we
conclude that the one-term solution approximates the lumped-capacity result well for Bi𝐿 ⩽ 0.1.

This finding indicates that the one-term solution is acceptable for very low Biot number at any
value of the Fourier number.

In every case, Ostrogorsky’s formula, √Bi𝐿, is within 14% or better of ̂𝜆1. For Bi𝐿 ⩽ 0.1,
Ostrogorsky’s formula is within 1.7%.
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Problem 5.61 When the one-term solution, eqn. (5.42), is plotted on semilogarithmic co-
ordinates as logΘ versus Fo for fixed values of Bi and position, what is the shape of the curve
obtained? Make such a plot for a sphere with Bi = {0.5, 1, 2, 5, 10} at 𝑟/𝑟𝑜 = 1 for 0.2 ⩽ Fo ⩽ 1.5.

Solution
Note that 𝐴1, 𝑓1, and ̂𝜆1 are constant if Bi and the position are fixed. Taking the logarithm of

eqn. (5.42), we have
logΘ = log(𝐴1𝑓1) − ̂𝜆21 Fo

which is the equation of a straight line, 𝑦 = 𝑎𝑥 + 𝑏, if 𝑦 = logΘ and 𝑥 = Fo.
Answer

⟵−−−−−−−

For a sphere with 𝑟/𝑟𝑜 = 1, we may take 𝑓1 from Table 5.1, giving 𝑓1(1) = sin( ̂𝜆1)/ ̂𝜆1. 𝐴1 and
̂𝜆1 are functions of Biot number, and their values for Bi = {0.5, 1, 2, 5, 10} are listed in Table 5.2.

With those values we may plot Θ vs. Fo𝑟𝑜 for each Bi. Plotting Θ on a logarithmic axis has the
same appearance as plotting logΘ on a linear axis.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0.001

0.01

0.1

1
𝗋/𝗋𝗈 = 𝟣

Biro = 0.5

1

2

5

10

Fourier number, Fo

Θ
=
𝖳
−
𝖳 ∞

𝖳 𝗂
−
𝖳 ∞
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Problem 5.62 The solution for a semi-infinite body with convection, eqn. (5.53), contains a
parameter 𝛽 which is like Bi√Fo. For cylinders with Bi = 1 and Bi = 10, use eqn. (5.53) to find
Θ when Fo = 0.05 for each of the four positions shown in Fig. 5.8, noting that 𝑟 and 𝑥 coordinates
have different origins. How to these values compare to the values in Fig. 5.8?

Solution
Equation (5.53) is:

Θ = erf
𝜁
2 + exp(𝛽𝜁 + 𝛽2)[erfc(

𝜁
2 + 𝛽)]

We can write

𝛽 =
ℎ√𝛼𝑡
𝑘 =

ℎ𝑟𝑜
𝑘 √

𝛼𝑡
𝑟2𝑜

= Bi𝑟𝑜√Fo𝑟𝑜

To adjust the coordinates to start from the cylinder surface, we set 𝑥 = 𝑟𝑜 − 𝑟. Then

𝜁 = 𝑥
√𝛼𝑡

=
𝑟𝑜 − 𝑟
√𝛼𝑡

= (1 − 𝑟/𝑟𝑜)(
𝑟𝑜
√𝛼𝑡

) =
1 − 𝑟/𝑟𝑜
√Fo𝑟𝑜

For Fo = 0.05:

𝛽 = Bi𝑟𝑜√Fo𝑟𝑜 = 0.2236Bi𝑟𝑜, 𝜁 =
1 − 𝑟/𝑟𝑜
√Fo𝑟𝑜

= 4.472(1 − 𝑟/𝑟𝑜)

The calculations take a few steps, to calculate each function with tables or software, but in the
end we make a table:

𝑟/𝑟𝑜
Case Bi𝑟𝑜 𝛽 0 0.5 0.75 1.0

Semi-infinite 𝜁 4.472 2.236 1.118 0
1 0.2236 Θ 0.9993 0.9863 0.9331 0.7904
10 2.236 Θ 0.9993 0.9324 0.7104 0.2323

Chart 1 — Θ 0.99 0.98 0.92 0.77
10 — Θ (0.96) 0.89 0.65 0.20

Θsemi/Θchart 1 1.009 1.001 1.014 1.026
10 1.041 1.048 1.093 1.162

Our approximation of the cylinder as a semi-infinite body has the best agreement with the chart
for Bi𝑟𝑜 = 1, where the largest difference is less than 3%. For Bi𝑟𝑜 = 10, the greatest difference is
16%.
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Problem 5.63 Use eqn. (5.53), for a semi-infinite body, to write an equation for Θ at the
surface of a body as a function of Bi and Fo. Plot this function on semilogarithmic axes for Fo =
0.05, 0.02, and 0.01 over the domain 0.01 ⩽ Bi ⩽ 100. Compare to Figs. 5.7–5.9. (If you encounter
numerical problems for very large values of Bi, note that 𝑒𝑥2erfc𝑥 ∼ 1/√𝜋𝑥 as 𝑥 → ∞.)

Solution
Equation (5.53) is:

Θ = erf
𝜁
2 + exp(𝛽𝜁 + 𝛽2)[erfc(

𝜁
2 + 𝛽)]

and at the surface 𝑥 = 0, so that
𝜁 = 𝑥

√𝛼𝑡
= 0

for 𝑡 > 0. Since erf(0) = 0, eqn (5.53) reduces to
Θ = exp(𝛽2) erfc(𝛽) (*)

We can write

𝛽 =
ℎ√𝛼𝑡
𝑘 = ℎ𝐿

𝑘 √
𝛼𝑡
𝐿2 = Bi𝐿√Fo𝐿

and we could equally well have put 𝑟𝑜 in place of 𝐿. So, eqn. (*) may be rewritten as

Θ = exp(Bi2Fo) erfc(Bi√Fo)
The evaluation of this function can be done with tables of erfc, but it is best done using software
(especially since many values need to be computed to make a chart). The result of such calculations
is plotted below.

0.01 0.1 1 10 100
0.0

0.5

1.0

Fo = 0.05 0.01

0.02

Biot number, Bi

Θ
=
𝖳
−
𝖳 ∞

𝖳 𝗂
−
𝖳 ∞

The curve for Fo = 0.05 can be compared to those for the same Fo and 𝑥/𝐿 = 1 or 𝑟/𝑟𝑜 = 1 in
Figs. 5.7–5.9. This approximation is hardly distinguishable from the slab result at Fo = 0.05 . It
is roughly 1.5% high for the cylinder, and about 7% for the sphere. Of course, the approximation
should become more accurate as Fo is reduced still further.
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Problem 5.64 Use the method outlined in [5.20] to find the shape factors for Figs. 5.30g
and 5.30j.

Solution
Go to Reference [5.20] in the textbook, and click on the link to that short paper. That paper

describes how certain symmetries always result in shape factors of 𝑆 = 1. Figures 5.30g and 5.30j
are possessed of that symmetry and are, in fact, both used as illustrations of what the author calls
“Yin-Yang” symmetry. Therefore, in both cases,

𝑆 = 1
Here is the flux plot for Fig. 5.22g (see Section 5.7):

And this is simply a subset of the flux plot for Fig. 5.30j –– one quarter of its flux plot.
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Problem 5.66 The flux plots Fig. 5.31 are for pentagons with bottom edge at 𝑇 = 1. In (a),
the top right edge is at 𝑇 = 0, while in (b), both top edges are at 𝑇 = 0. All other edges are
adiabatic. Find the shape factor for each flux plot. What is the product of these two shape factors?
Explain why.

(a) Top right edge isothermal (b) Both top edges isothermal

Flux plots for regular pentagons with isothermal bottom edges and either one or two
top edges isothermal.

Solution Let 𝑆1-1 be the shape factor for Fig. 5.31a and 𝑆2-1 be that for Fig. 5.31b. For
Fig. 5.31a, we count𝑁 = 20 heat flow channels and 𝐼 = 22 temperature increments. For Fig. 5.31b,
we count 20 heat flow channels and 18 temperature increments. Therefore, with eqn. (5.67),

𝑆1-1 = 𝑁
𝐼 =

18
20 = 0.900 and 𝑆2-1 = 20

18 = 1.111

The product 𝑆1-1×𝑆2-1 ≡ 1! The reason is seen by rotating Fig. 5.31a clockwise by one side: the
figures are identical except that the isothermal and adiabatic sides have been interchanged, which
has the effect of interchanging the heat flow channels and the temperature increments. Thus 𝑁 → 𝐼
and 𝐼 → 𝑁.

Comment 1: The interchange of adiabatic and isothermal will always cause the original shape
factor to be replaced by its reciprocal [1].

Comment 2: The flux plots shown here are approximate (the number of temperature increments
was numerically forced to be an integer). Finite element method (FEM) solution of these two cases
yields 𝑆1-1 = 0.8963 and 𝑆2-1 = 1.1157 to an accuracy of about 0.05%.

Reference:
[1] J. Hersch, “On Harmonic Measures, Conformal Moduli and Some Elementary Symme-

try Methods,” Journal d’Analyse Mathématique, 42:211–228, 1982. doi:10.1007/BF02786880
NB: This paper requires a knowledge of conformal mapping.
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Problem 6.12 (a) Verify that eqn. (6.120) follows from eqn. (6.119). (b) Derive an equation
for liquids that is analogous to eqn. (6.119).

Solution
a) Beginning with

ℎ =
1
!Δ)

∫ !

0
@F 3G

=
1
!

[∫ G;

0
ℎlaminar 3G +

∫ GD

G;

ℎtrans 3G +
∫ !

GD

ℎturbulent 3G

]
(6.119)

we may evaluate each integral separately. For a uniform temperature surface, the Nusselt
numbers are given by these equations:

Nulam = 0.332 Re1/2
G Pr1/3 (6.58)

Nutrans = Nulam
(
Re; , Pr

) (ReG
Re;

)2
(6.114b)

Nuturb = 0.0296 Re0.8
G Pr0.6 for gases (6.112)

The three integrals are thus

1
!

∫ G;

0
ℎlam 3G =

0.332 :Pr1/3

!

∫ G;

0

√
D∞
a G

3G =
0.332 :Pr1/3

!
2
√
D∞G;
a

=
:

!
0.664 Re1/2

;
Pr

1
!

∫ GD

G;

ℎtrans 3G =
:

!

Nulam
(
Re; , Pr

)
Re2

;

(D∞
a

)2 ∫ GD

G;

G2−1 3G =
:

!

Nulam
(
Re; , Pr

)
Re2

;

(D∞
a

)2 1
2

(
G2D − G2;

)
=
:

!

Nulam
(
Re; , Pr

)
Re2

;

1
2

(
Re2D − Re2;

)
=
:

!

1
2

[
Nuturb

(
ReD, Pr

)
− Nulam

(
Re; , Pr

) ]
where the last step follows because eqn. (6.114b) intersects Nuturb at ReD, and

1
!

∫ !

GD

ℎturb 3G =
0.0296 :Pr0.6

!

(D∞
a

)0.8 ∫ !

GD

G−0.2 3G =
0.0296 :Pr0.6

(0.8)!

(
Re0.8

! − Re0.8
D

)
=
:

!
0.037 Pr0.6

(
Re0.8

! − Re0.8
D

)
Collecting these terms, we find:

Nu! ≡
ℎ!

:
= 0.037 Pr0.6

(
Re0.8

! − Re0.8
D

)
+ 0.664 Re1/2

;
Pr1/3

+ 1
2

(
0.0296 Re0.8

D Pr0.6 − 0.332 Re1/2
;

Pr1/3
)

︸                                                ︷︷                                                ︸
contribution of transition region

for gases (6.120)

b) For a liquid flow, the turbulent correlation should be eqn. (6.113):

Nuturb = 0.032 Re0.8
G Pr0.43 for nonmetallic liquids (6.113)
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and the integral in the turbulent range changes to
1
!

∫ !

GD

ℎturb 3G =
0.032 :Pr0.43

!

(D∞
a

)0.8 ∫ !

GD

G−0.2 3G =
0.032 :Pr0.43

(0.8)!

(
Re0.8

! − Re0.8
D

)
=
:

!
0.040 Pr0.43

(
Re0.8

! − Re0.8
D

)
Collecting these terms, we find:

Nu! ≡
ℎ!

:
= 0.040 Pr0.43

(
Re0.8

! − Re0.8
D

)
+ 0.664 Re1/2

;
Pr1/3

+ 1
2

(
0.032 Re0.8

D Pr0.43 − 0.332 Re1/2
;

Pr1/3
)

︸                                               ︷︷                                               ︸
contribution of transition region

for nonmetallic liquids
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1ϰϭϠϪϣϫ ���� Fluid at a uniform speed 𝑈 flows into a channel between two parallel plates
a distance 𝑑 apart. A laminar boundary layer grows on each plate. (a) At approximately what
distance from the inlet will the two boundary layers first touch? (b) If the flow remains laminar,
qualitatively sketch the velocity distribution between the plates a long distance after the boundary
layers meet, noting that the mass flow rate is constant along the channel. [(a) 𝑥/𝑑 ≅ 0.01(𝑈𝑑/𝜈).]

4ϭϪϳϲϧϭϬ
a) Initially, a flat-plate boundary layer grows on each wall. The thickness of the b.l. is given by

eqn. (6.2):
𝛿
𝑥 = 4.92

√Re𝑥
(6.2)

At the location where the boundary layer thickness reaches half the distance between the
plates, the boundary layers will meet. Call this position 𝑥𝑒. Then:

𝑑
2 ≅ 𝛿 =

4.92𝑥𝑒
√Re𝑥𝑒

=
4.92√𝑥𝑒
√𝑈/𝜈

or

√𝑥𝑒 ≅
𝑑√𝑈/𝜈
2(4.92)

Squaring this equation and dividing through by 𝑑, we get
𝑥𝑒
𝑑 ≅ [2(4.92)]−2 𝑈𝑑𝜈 = 0.01 𝑈𝑑𝜈

Answer
⟵−−−−−−−

b) Because mass is conserved, when the fluid in the boundary layers on the walls slows down,
the fluid at the center of the channel will have to move at a speed 𝑢max > 𝑈 so that the total
mass rate in any cross-section stays constant. In fact, the same behavior occurs in a tube, as
we will see in Chapter 7.

A sketch of the evolving velocity profile is below, for either parallel plates, with coordinates
(𝑥, 𝑦), or a circular tube, with coordinates (𝑥, 𝑟).

Comment: More careful analysis, based upon the solution of the momentum equation,
shows that a coefficient several times greater than 0.01 characterizes the distance to achieve
the final velocity profile, which is parabolic.
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Problem 6.16 Air at −10 °C flows over a smooth, sharp-edged, almost-flat, aerodynamic
surface at 240 km/hr. The surface is at 10 °C. Turbulent transition begins at Re; = 140,000 and
ends at ReD = 315,000. Find: (a) the G-coordinates within which laminar-to-turbulent transition
occurs; (b) ℎ for a 2 m long surface; (c) ℎ at the trailing edge for a 2 m surface; and (d) X and ℎ

at G; .

Solution
a) We evaluate physical properties at the film temperature, ) 5 = (−10 + 10)/2 = 0 °C: a =

1.332 × 10−5 m2/s, Pr = 0.711, and : = 0.244 W/m·K. Also, D∞ = 240(1000)/(3600) =
66.7 m/s. Then:

G; =
Re;a
D∞

=
(140000) (1.332 × 10−5)

(66.7) = 0.0280 m

GD =
ReDa
D∞

=
(315000) (1.332 × 10−5)

(66.7) = 0.0629 m

Observe that the flow is fully turbulent over 1.937/2.00 = 96.9% of its length.

b) First, we need Re!:

Re! =
D∞!

a
=

(66.7) (2)
1.332 × 10−5 = 1.00 × 107

Then we get 2 from eqn. (6.115):

2 = 0.9922 log10(140, 000) − 3.013 = 2.09

Now we may use eqn. (6.120):

Nu! = 0.037(0.711)0.6 [(1.00 × 107)0.8 − (3.15 × 105)0.8]
+ 0.664 (1.40 × 105)1/2(0.711)1/3

+ 1
2.09

[
0.0296(3.15 × 105)0.8(0.711)0.6 − 0.332 (1.40 × 105)1/2(0.711)1/3

]
= 11248.9 + 221.8 + 236.0 = 1.171 × 104

Thus

ℎ =
:

!
Nu! =

(0.0244) (1.171 × 104)
2

= 143 W/m2K

c) With eqn. (6.112),

Nu! = 0.0296 Re0.8
! Pr0.6 = 0.0296 (1.00 × 107)0.8(0.711)0.6 = 9603

so
ℎ(!) = :

!
Nu! =

(0.0244) (9603)
2

= 117 W/m2K

d) The flow is laminar here. From eqn (6.58):

NuG; = 0.332 Re1/2
;

Pr1/3 = 0.332 (1.40 × 105)1/2(0.711)1/3 = 110.9

so
ℎ(G;) =

:

G;
NuG; =

(0.0244) (110.9)
0.0280

= 96.6 W/m2K
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With eqn (6.2), we find that the boundary layer here is very thin:

X =
4.92 G;√

ReG;
=

4.92(0.0280)
√

1.4 × 105
= 0.000368 m = 0.37 mm
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Problem 6.17 Find ℎ in Example 6.9 using eqn. (6.120) with Re; = 80, 000. Compare with
the value in the example and discuss the implication of your result. Hint: See Example 6.10.

Solution Equation (6.120) is

Nu! ≡
ℎ!

:
= 0.037 Pr0.6

(
Re0.8

! − Re0.8
D

)
+ 0.664 Re1/2

;
Pr1/3

+ 1
2

(
0.0296 Re0.8

D Pr0.6 − 0.332 Re1/2
;

Pr1/3
)

(6.120)

From Example 6.9, we have Re! = 1.270 × 106 and Pr = 0.708. We may find 2 from eqn. (6.115):
2 = 0.9922 log10(80, 000) − 3.013 = 1.85

We also need ReD, which we can find following Example 6.10:

Re1.85−0.8
D =

0.0296(0.708)0.6(80, 000)1.85

0.332(80, 000)1/2(0.708)1/3
Solving, ReD = 184, 500. Substituting all this into eqn. (6.120):

Nu! = 0.037(0.708)0.6
[
(1.270 × 106)0.8 − (1.845 × 105)0.8

]
+ 0.664 (8.0 × 104)1/2(0.708)1/3

+ 1
1.85

[
0.0296(1.845 × 105)0.8(0.708)0.6 − 0.332 (8.0 × 104)1/2(0.708)1/3

]
Evaluating, we find the contributions of the turbulent, laminar, and transition regions:

Nu! = 1806.6︸ ︷︷ ︸
turb.

+ 167.4︸︷︷︸
lam.

+ 167.1︸︷︷︸
trans.

= 2, 141

The transition region contributes 7.8% of the total. The average heat transfer coefficient is

ℎ =
2141(0.0264)

2.0
= 28.26 W/m2K

and the convective heat loss from the plate is
& = (2.0) (1.0) (28.26) (310 − 290) = 1130 W

The earlier transition to turbulence increases the heat removal by [(1130+22)/(756+22)−1]×100 =

48%.
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Problem 6.18 For system described in Example 6.9, plot the local value of ℎ over the
whole length of the plate using eqn. (6.117). On the same graph, plot ℎ from eqn. (6.58) for
Re𝑥 < 800, 000 and from(((((((hhhhhhheqn. (6.115) eqn. (6.112) for Re𝑥 > 400, 000. Discuss the results. (Final
equation numbers refer to AHTT Version 5.10.)

Solution
The equations that we must work with are as follow (all suitable for air with Pr = 0.708, using

the film temperature properties given in Example 6.9):

Nu𝑥(Re𝑥, Pr) = [Nu5𝑥,lam + (Nu−10𝑥,trans + Nu−10𝑥,turb)
−1/2

]
1/5

(6.117)

Nu𝑥,lam = 0.332 Re1/2𝑥 Pr1/3 (6.58)
Nu𝑥,turb = 0.0296 Re0.8𝑥 Pr0.6 (6.112)

We need to plot these in terms of the heat transfer coefficient,
ℎ(𝑥) = (𝑘/𝑥)Nu𝑥 = (0.0264/𝑥)Nu𝑥 for 𝑥 in meters

Now, we have
Re𝑥 =

𝑢∞
𝜈 𝑥 = 10 𝑥

1.575 × 10−5 = 6.349 × 105 𝑥

so that
Nu𝑥,lam = 0.332 (6.349 × 105 𝑥)1/2 (0.708)1/3 = 235.8 𝑥1/2

Nu𝑥,turb = 0.0296 (6.349 × 105 𝑥)0.8 (0.708)0.6 = 1157 𝑥0.8

Also, we can easily calculate that Re𝑥 = 400, 000 at 𝑥 = 0.630 m and Re𝑥 = 800, 000 at
𝑥 = 1.260 m. Since the plate is 2 m long, we observe that turbulent flow covers more than half of
the plate.

The transitional Reynolds number is given by eqn. (6.114b):

Nutrans = Nulam(Re𝑙, Pr)(
Re𝑥
Re𝑙

)
𝑐

(6.114b)

The value 𝑐 = 2.55 is the same as in Example 6.9, and with Re𝑙 = 400, 000 as in the example,

Nulam(400000, 0.708) = 0.332(400000)1/2(0.708)1/3 = 187.1
so that

Nutrans = (187.1)(
Re𝑥

400, 000)
2.55

= (187.1)(6.349 × 105
4.000 × 105)

2.55

𝑥2.55 = 607.7 𝑥2.55

Putting all this into eqn. (6.117), for ℎ in W/m2K and 𝑥 in meters,

ℎ(𝑥) = (0.0264/𝑥) [(235.8 𝑥1/2)5 + [(607.7 𝑥2.55)−10 + (1157 𝑥0.8)−10]
−1/2

]
1/5

Likewise
ℎ(𝑥)lam = 235.8 𝑥1/2(0.0264/𝑥) = 6.225 𝑥−0.5

ℎ(𝑥)turb = 1157 𝑥0.8(0.0264/𝑥) = 30.54 𝑥−0.2

We may now plot all this. Since we are plotting against the physical dimension 𝑥, we will not
use a logarithmic 𝑥-axis. The 𝑦-axis may still be plotted on a logarithmic scale.
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The chart shows that eqns. (6.58) and (6.117) are identical for 𝑥 ≲ 0.45m and that eqns. (6.112)
and (6.117) are identical for 𝑥 ≳ 1.6 m. The heat transfer coefficient drops sharply with 𝑥 in the
laminar range, as the laminar boundary grows thicker. The heat transfer coefficient rises steeply as
turbulent transition begins and develops. In the fully turbulent range, ℎ decreases gradually.
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Problem 6.22 For air flowing above an isothermal plate, plot the ratio of ℎ(𝑥)laminar to
ℎ(𝑥)turbulent as a function of Re𝑥 in the range of Re𝑥 that might be either laminar or turbulent. What
does the plot suggest about designing for effective heat transfer?

Solution For laminar flow of gases or liquids over an isothermal surface, we use eqn. (6.58):

Nu𝑥 = 0.332 Re1/2𝑥 Pr1/3

For turbulent flow, we can use eqn. (6.111); however, as noted on pgs. 326–327 (and in Fig. 6.22),
eqn. (6.112) approximates eqn. (6.111) very closely for gases. Because eqn. (6.112) is less compli-
cated, we will use it:

Nu𝑥 = 0.0296 Re0.8𝑥 Pr0.6

Then, with Nu𝑥 = ℎ𝑥/𝑘, we can simply divide the first equation by the second one:

ℎ(𝑥)laminar
ℎ(𝑥)turbulent

=
0.332 Re1/2𝑥 Pr1/3

0.0296 Re0.8𝑥 Pr0.6
= 10.87

Re0.3𝑥 Pr0.267

A specific temperature was not stated, but from Table A.6 we see that air has Pr ≃ 0.70 over a very
wide range of temperature. So, we may simplify

ℎ(𝑥)laminar
ℎ(𝑥)turbulent

= 10.87
Re0.3𝑥 0.700.267

= 12.0
Re0.3𝑥

A boundary layer may be either laminar or turbulent for 3 × 104 ≲ Re𝑥 ≲ 4 × 106 (see pg. 276
or Fig. 6.4). The corresponding plot is given below.

𝟣𝟢𝟧 𝟣𝟢𝟨
0.0

0.2

0.4

0.6

0.8

1.0

𝟥 × 𝟣𝟢𝟦 𝟦 × 𝟣𝟢𝟨

Flat-plate boundary layer

Reynolds number, Rex

𝗁𝗅𝖺𝗆/𝗁𝗍𝗎𝗋𝖻

The figure shows that ℎlaminar is always substantially less than ℎturbulent. To raise the heat transfer
rate from a flat surface, we should aim to cause turbulent transition as early as possible (note,
however, that turbulent drag may be increased by an earlier transition).

Comment: As discussed in Sect. 6.9, the transition region between laminar and turbulent flow
may be as long as the laminar region itself (see Fig. 6.21). In the transition region, ℎ(𝑥) lies
between the lower bound of ℎ(𝑥)laminar and the upper bound of ℎ(𝑥)turbulent.
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Problem 6.26 In Sect. 6.4, we noted that the kinetic theory of gases predicts values of Pr
ranging from 2/3 for monatomic ideal gases and 1 for complex molecules. Show how this is borne
out for gases at 400 K, using Table A.6 in Appendix A.

Solution
Using values given in Table A.6 of Appendix A we find the following.
a) For monatomic gases, He and Ar, Pr = 0.663 and 0.666. These values are in near perfect

agreement with the predicted value of 2/3.
b) For diatomic gases: H2, N2, O2 and CO, Pr = 0.690, 0.711, 0.734, and 0.692. These results

are within a few percent of the predicted value: 5/7 or 0.714.
c) For more complex molecules Pr should begin approaching 1. For molecules made up of

three atoms, H2O and CO2, Pr = 0.982 and 0.738, respectively. Water is close to 1, but
carbon dioxide does not depart very far from the value for a diatomic molecule. Ammonia,
NH3, which is made from four atoms, yields Pr = 0.858, which is well on its way to 1.

The simple kinetic theory is thus quite accurate for these monatomic gases, and fairly accurate
for these diatomic gases. After that, kinetic theory merely suggests the correct trend toward 1.

Comment: If we moved ahead to Chapter 11, we would find the Eucken equation (11.127),
Pr = 4𝛾/(9𝛾 − 5) where 𝛾 is the ratio of specific heats. Thus, for N2 and O2, 𝛾 = 1.4, and Pr should
be 0.737. This value is very close to the actual values above. The ratio 𝛾 is 1.31 for ammonia, so
Pr would be 0.771, which is low. Eucken’s formula, while it is an improvement, is likewise valid
for very simple and for very complex molecules [6.7]. But it is only approximate in between. (See
Problem 11.20.)
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Problem 6.29 Plot 𝑞𝑤 against 𝑥 for the situation described in Example 6.9. (If you have
already worked Problem 6.18, this calculation will be short.)

Solution
The solution to Problem 6.18 shows that the heat transfer coefficient is given by eqn. (6.117),

which may be written in terms of ℎ in W/m2K and 𝑥 in meters:

ℎ(𝑥) = (0.0264/𝑥) [(235.8 𝑥1/2)5 + [(607.7 𝑥2.55)−10 + (1157 𝑥0.8)−10]
−1/2

]
1/5

The wall heat flux for an isothermal wall is 𝑞𝑤(𝑥) = ℎ(𝑥)(𝑇𝑤 − 𝑇∞). Here, (𝑇𝑤 − 𝑇∞) =
(310 − 290) = 20 K. Hence:

𝑞𝑤(𝑥) = (20)(0.0264/𝑥) [(235.8 𝑥1/2)5 + [(607.7 𝑥2.55)−10 + (1157 𝑥0.8)−10]
−1/2

]
1/5

The plot follows the considerations in the solution of Problem 6.18.
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Problem 6.30 Consider the plate in Example 6.9. Suppose that instead of specifying 𝑇𝑤 =
310 K, we specified 𝑞𝑤 = 500W/m2. Plot 𝑇𝑤 against 𝑥 for this case.

Solution The solution to Problem 6.18 shows that the heat transfer coefficient is given by
eqn. (6.117). In Problem 6.18, the wall was isothermal, with

Nu𝑥,lam = 0.332 Re1/2𝑥 Pr1/3 (6.58)
which led to this expression for ℎ in W/m2K and 𝑥 in meters:

ℎ(𝑥)isothermal = (0.0264/𝑥) [(235.8 𝑥1/2)5 + [(607.7 𝑥2.55)−10 + (1157 𝑥0.8)−10]
−1/2

]
1/5

The physical properties used in that calculation were based on a film temperature of 300 K, which
must check after we have the wall temperature.

In the present problem, the wall is uniform flux with

Nu𝑥,lam = 0.4587 Re1/2𝑥 Pr1/3 (6.71)
As a result, we must adjust the constants used in the laminar and transitional portions of the
equation (in red) by the ratio 0.4587/0.332 = 1.38:

ℎ(𝑥)uniform flux = (0.0264/𝑥) [((1.38)235.8 𝑥1/2)5 + [((1.38)607.7 𝑥2.55)−10 + (1157 𝑥0.8)−10]
−1/2

]
1/5

The heat flux temperature relationship is 𝑞𝑤 = ℎ(𝑥)[𝑇𝑤(𝑥) − 𝑇∞]. Here, 𝑇∞ = 290 K and
𝑞𝑤 = 500W/m2. Hence:

𝑇𝑤(𝑥) = 𝑇∞ + 𝑞𝑤/ℎ(𝑥)uniform flux

The rest is left to software, with the plot below. The plate is hottest where the laminar b.l. is thickest.
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The local film temperature is still about 300 K for the right-hand part of the plate. On the left,
the local film temperature rises to as much as 310 K; but air’s properties change very little from
300 K to 310 K. We conclude that the properties do not need to be updated.
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Problem 6.38 The temperature outside is 35°F, but with the wind chill it’s����XXXX−15°F 24°F. And
you forgot your hat. If you go outdoors for long, are you in danger of freezing your ears? Why or
why not?

Solution
The air temperature outside is 35°F. In accordance with the Second Law of Thermodynamics,

heat cannot flow from your face to any temperature less than that. Hence:

The answer to the question is No, one’s ears could never freeze.
Answer

⟵−−−−−−−

What then does 24°F mean? The heat transfer from our face to the surroundings increases greatly
when wind (forced convection) increases the heat transfer coefficients around our face relative to
the heat transfer coefficients is still air (natural convection and radiation). In a sufficient wind, our
face cools at the same rate it would in still air at 24°F, and so our face feels far colder than it would
in still air. For that reason, the news announcers often report the wind chill temperature as the
“feels like” temperature.

As a matter of interest, here is the National Weather Service’s Wind Chill Chart:
www.weather.gov/safety/cold-wind-chill-chart

From this chart, we find that a wind of 19mphwould cause a wind chill of 24°F at an air temperature
of 35°F.
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Problem 6.39 To heat the airflow in a wind tunnel, an experimenter uses an array of electri-
cally heated, Nichrome V strips. Each strip is 20 cm by 2.5 cm and very thin. They are stretched
across the flow with the thin edge facing into the wind. The air flows along both �����2.54 cm sides.
The strips are spaced vertically, each 1 cm above the next. Air at 1 atm and 20°C(((((((((passes over them
enters the array of strips at 10 m/s.

a) How much power must each strip deliver to raise the mean temperature of the airstream to
30°C?

b) What is the heat flux if the electrical dissipation in the strips is uniform?
c) What are the average and maximum temperatures of the strips?

Solution
a) We can consider the airflow around one strip. At 20°C (293 K), the density of air is 𝜌 =
1.206 kg/m3 and the heat capacity is 𝑐𝑝 = 1006 J/kg-K from Table A.6.

Each strip heats half of the channels between it and the next strip above and the next
strip below, in other words 0.5 cm above it and 0.5 cm below it. An energy balance on the
cross-sectional area 𝐴𝑐, accounting for both sides of the strip, gives

Electrical power dissipation in each strip, 𝑃 = 𝑚̇𝑐𝑝Δ𝑇

The mass flow rate for air heated by one strip, 𝑚̇

𝑚̇ = 𝜌𝑢∞𝐴𝑐 = (1.206)(10)(0.2)(0.01) = 0.0241 kg/m3

and, in steady flow, this rate is constant as the air passes over the strip, even if its density
drops (the speed increases in proportion; see Sect. 7.2). Then

𝑃 = 𝑚̇𝑐𝑝Δ𝑇
= (0.0241)(1006)(30 − 20)

= 242.6W
Answer

⟵−−−−−−−

b) The power is provided by heat leaving both sides of the strip. The area of one side is 20 cm
by 2.5 cm, so

2(0.20)(0.025)𝑞 = 𝑃 = 242.6W

where 𝑞 is the heat flux on one side of the strips. Then

𝑞 = 242.6
2(0.2)(0.025)

= 24.26 kW/m2 Answer
⟵−−−−−−−

c) To find the average and maximum temperatures, we need the average heat transfer coefficient
and the minimum heat transfer coefficient. The latter should occur at the end of the plate,
where the boundary layer has grown thickest. For both of these calculations, we must
determine Re𝐿.

We need the physical properties of air. Since we don’t know the temperature of the strips,
it’s hard to precisely estimate the film temperature. Let’s guess a value that we can read from
Table A.6 without interpolation, and we can adjust once we have a better idea of the strip
temperature, if necessary. Take 𝑇𝑓 = 310 K. Then

𝜈 = 1.670 × 10−5 m2/s, 𝑘 = 0.0271W/m⋅K, Pr = 0.706
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and the Reynolds number is

Re𝐿 =
𝑢∞𝐿
𝜈 = (10)(0.025)

1.670 × 10−5 = 1.50 × 104

The Reynolds number is quite low and the flow is laminar over the whole strip. We can use
eqns. (6.71) and (6.72), both with the Reynolds number at the end of the plate, Re𝐿:

Nu𝐿 = 0.4587 Re1/2𝐿 Pr1/3 = 0.4587(1.50 × 104)1/2(0.706)1/3 = 50.0 (6.71)

Nu𝐿 = 0.688 Re1/2𝐿 Pr1/3 = 0.688(1.50 × 104)1/2(0.706)1/3 = 75.0 (6.72)
Then:

ℎ(𝐿) = 𝑘
𝐿Nu𝐿 =

0.0271
0.025 (50.0) = 54.2W/m2K

ℎ = 𝑘
𝐿Nu𝐿 =

0.0271
0.025 (75.0) = 81.3W/m2K

The temperatures are:

𝑇(𝐿) = 𝑇∞ +
𝑞

ℎ(𝐿)
= 20 + 24.26 × 103

54.2 = 468 °C

�𝑇 = 𝑇∞ +
𝑞
ℎ
= 20 + 24.26 × 103

81.3 = 318 °C

The film temperature we guessed was too low. Let’s use the average temperature just
computed to find an updated, average film temperature:

𝑇𝑓 =
�𝑇 + 𝑇∞
2 = 318 + 20

2 = 169 °C = 442 K

and the properties are
𝜈 = 3.109 × 10−5 m2/s, 𝑘 = 0.0363W/m⋅K, Pr = 0.698

Notice that the kinematic viscosity is much higher, but so is 𝑘. These changes affect ℎ
oppositely. Recalculating the Reynolds number, we get Re𝐿 = 8057. The Nusselt numbers
are

Nu𝐿 = 0.4587(8057)1/2(0.698)1/3 = 36.5
Nu𝐿 = 0.688(8057)1/2(0.698)1/3 = 54.8

and the heat transfer coefficients are

ℎ(𝐿) = 𝑘
𝐿Nu𝐿 =

0.0363
0.025 (36.5) = 53.0W/m2K

ℎ = 𝑘
𝐿Nu𝐿 =

0.0363
0.025 (54.8) = 79.6W/m2K

These values are about 2% lower than the previous ones. The revised temperatures are:

𝑇(𝐿) = 𝑇∞ +
𝑞

ℎ(𝐿)
= 20 + 24.26 × 103

53.0 = 478 °C
Answer

⟵−−−−−−−

𝑇 = 𝑇∞ +
𝑞
ℎ
= 20 + 24.26 × 103

79.6 = 325 °C
Answer

⟵−−−−−−−

Further iteration would shift the values only slightly.
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Problem 6.40 An airflow sensor consists of a 5 cm long, heated copper slug that is smoothly
embedded 10 cm from the leading edge of a flat plate. The overall length of the plate is 15 cm,
and the width of the plate and the slug are both 10 cm. The slug is electrically heated by an
internal heating element; but, owing to its high thermal conductivity, the slug has a nearly uniform
temperature along its airside surface. The heater’s controller adjusts its power to keep the slug
surface at a fixed temperature. The air velocity is calculated from measurements of the slug
temperature, the air temperature, and the heating power.

a) If the air is at 280 K, the slug is at 300 K, and the heater power is 5.0 W find the airspeed
assuming the flow is laminar. Hint: For 𝑥1/𝑥0 = 1.5, integration shows that

∫
𝑥1

𝑥0

𝑥−1/2 [1 − (𝑥0/𝑥)3/4]
−1/3

𝑑𝑥 = 1.0035 √𝑥0

b) Suppose that a disturbance trips the boundary layer near the leading edge, causing it to
become turbulent over the whole plate. The air speed, air temperature, and the slug’s set-
point temperature remain the same. Make a very rough estimate of the heater power that the
controller now delivers, without doing a lot of analysis.

Solution
a) This configuration has an unheated starting length, with 𝑥0 = 10 cm. Based on the given

information, the slug is isothermal at a temperature 𝑇𝑤 that is measured. The electrical power
dissipated in the slug, 𝑃, is also known and equals the heat transfer rate from the slug, 𝑄.
The flow speed (and Reynolds number) are unknown.

We may apply eqn. (6.64):

Nu𝑥 =
0.332 Re1/2𝑥 Pr1/3

[1 − (𝑥0/𝑥)
3/4]

1/3
(6.64)

The local heat flux, for Δ𝑇 = 𝑇𝑤 − 𝑇∞, is

𝑞𝑤 = 𝑘Δ𝑇
𝑥

0.332 Re1/2𝑥 Pr1/3

[1 − (𝑥0/𝑥)
3/4]

1/3
=
0.332 𝑘Δ𝑇 Pr1/3√𝑢∞/𝜈

√𝑥 [1 − (𝑥0/𝑥)
3/4]

1/3

The electrical power dissipated in the slug is the total transfer rate from the slug, which can
be found by integration. Let 𝑥1 = 15 cm be the position at the end of the slug, and let
𝑤 = 15 cm be the width of the plate:

𝑃 = 𝑄 = 𝑤∫
𝑥1

𝑥0

𝑞𝑤 𝑑𝑥

= 0.332 𝑤𝑘Δ𝑇 Pr1/3√𝑢∞/𝜈 ∫
𝑥1

𝑥0

𝑥−1/2 [1 − (𝑥0/𝑥)
3/4]

−1/3
𝑑𝑥

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
1.0035√𝑥0

= 0.333 𝑤𝑘Δ𝑇 Pr1/3√𝑢∞𝑥0/𝜈 (*)

where the integral was given in the problem statement (or see Comment below).
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For the case given, we may take a film temperature 𝑇𝑓 = (280 + 300)/2 = 290 K, and
with Table A.6 the properties of air are

𝜈 = 1.482 × 10−5 m2/s, 𝑘 = 0.0256W/m⋅K, Pr = 0.707
From eqn. (*):

𝑢∞ = 𝜈𝑃2

𝑥0(0.333 𝑤𝑘Δ𝑇 Pr1/3)2

= (1.482 × 10−5)(25)
(0.10)(0.15)2(0.333)2(0.0256)2(20)2(0.707)2/3

= 7.11 m/s
Answer

⟵−−−−−−−
We can that for laminar flow by looking at the Reynolds number at the plate’s trailing edge:

Re𝑥1 =
(7.11)(0.15)
(1.482 × 10−5)

= 7.2 × 104

which normally corresponds to laminar flow.
b) To make a rough estimate, we ignore the unheated starting length. This approach is more ac-

ceptable for a turbulent boundary layer than a laminar boundary layer because turbulent mix-
ing tends to erase the upstream history of the temperature distribution (recall from Sects. 6.7
and 6.8 that a turbulent boundary layer is not very sensitive to upstream conditions).

For turbulent flow on an isothermal plate, we have the local heat transfer coefficient from
either eqn. (6.111) or (because this fluid is air) eqn. (6.112):

Nu𝑥 = 0.0296 Re0.8𝑥 Pr0.6

We may find ℎ with eqn. (6.112) and integrate it from 𝑥0 to 𝑥1 as before:

𝑃 = 𝑄 = 𝑤∫
𝑥1

𝑥0

ℎ(𝑥)Δ𝑇𝑑𝑥

= 0.0296 𝑤𝑘Δ𝑇 Pr0.6(𝑢∞/𝜈)0.8 ∫
𝑥1

𝑥0

𝑥−0.2 𝑑𝑥

= 0.0296
0.8⏟⎵⏟⎵⏟

=0.037

𝑤𝑘Δ𝑇 Pr0.6(𝑢∞/𝜈)0.8(𝑥0.81 − 𝑥0.80 )

= (0.037)(0.15)(0.0256)(20)(16/(1.482 × 10−5)0.8[(0.15)0.8 − (0.1)0.8]

= 11.6W
Answer

⟵−−−−−−−
Comment: The integral in Part (a) can evaluated by putting 𝑠 = 𝑥/𝑥0. Call the integral 𝐼:

𝐼 = √𝑥𝑜 ∫
𝑥1/𝑥0

1
𝑠−1/2(1 − 𝑠−3/4)−1/3 𝑑𝑠 = √𝑥𝑜 ∫

𝑥1/𝑥0

1
𝑠−1/4(𝑠3/4 − 1)−1/3 𝑑𝑠

We can use the substitution 𝑢 = (𝑠3/4 − 1) to simplify further and integrate directly. We leave it to
the reader to check that

𝐼 = √𝑥𝑜 [2√𝑠(1 − 𝑠−3/4)2/3]
|
|
|

1.5

1

= 2√1.5(1 − (1.5)−3/4)2/3√𝑥𝑜 ≐ 1.003485√𝑥𝑜
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Problem 6.41 Equation (6.64) gives Nu𝑥 for a flat plate with an unheated starting length. This
equation may be derived using the integral energy equation (6.47), the velocity and temperature
profiles from eqns. (6.29) and (6.50), and 𝛿(𝑥) from eqn. (6.31a). Equation (6.52) is again obtained;
however, in this case, 𝜙 = 𝛿𝑡/𝛿 is a function of 𝑥 for 𝑥 > 𝑥0. Derive eqn. (6.64) by starting with
eqn. (6.52), neglecting the term 3𝜙3/280, and replacing 𝛿𝑡 by 𝜙𝛿. After some manipulation, you
will obtain

𝑥43
𝑑
𝑑𝑥𝜙

3 + 𝜙3 = 13
14 Pr

Show that the solution of this o.d.e. is

𝜙3 = 𝐶𝑥−3/4 + 13
14 Pr

for an unknown constant 𝐶. Then apply an appropriate initial condition and the definition of 𝑞𝑤
and Nu𝑥 to obtain eqn. (6.64).

Solution
We start with eqn. (6.52):

𝛿𝑡
𝑑
𝑑𝑥[𝛿𝑡 ∫

1

0
(32𝜂𝜙 −

1
2𝜂

3𝜙3)(1 − 3
2𝜂 +

1
2𝜂

3) 𝑑𝜂
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

= 3

20
𝜙 − 3

280
𝜙3 ≅ 3

20
𝜙

] = 3𝛼
2𝑢∞

(6.52)

which, when approximated as shown in the underbrace, simplifies to

𝛿𝑡
𝑑
𝑑𝑥[𝛿𝑡

3
20𝜙] =

3𝛼
2𝑢∞

Now put 𝛿𝑡 = 𝜙𝛿:

𝛿𝜙 𝑑
𝑑𝑥(𝛿𝜙

2) = 10𝛼
𝑢∞

(*)

Equation (6.31a) gives
𝛿2 = 280

13
𝜈𝑥
𝑢∞

(6.31a)
so

𝛿 = √
280
13 √

𝜈𝑥
𝑢∞

We can substitute this into eqn. (*) above and get
280
13

𝜈
𝑢∞

√𝑥𝜙 𝑑
𝑑𝑥(𝜙

2√𝑥) = 10𝛼
𝑢∞

or
√𝑥𝜙 𝑑

𝑑𝑥(𝜙
2√𝑥) = 13

28
1
Pr

Now expand the derivative on the left-hand side
1
2𝜙

3 + 2𝜙2𝑥
𝑑𝜙
𝑑𝑥 = 13

28
1
Pr

or
2
3𝑥

𝑑
𝑑𝑥𝜙

3 + 1
2𝜙

3 = 13
28

1
Pr

4
3𝑥

𝑑
𝑑𝑥𝜙

3 + 𝜙3 = 13
14

1
Pr

Answer
⟵−−−−−−− (**)
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To solve, we notice that eqn. (**) is just a first-order, linear o.d.e. for 𝜙3. We need the particular
and homogeneous solutions. By inspection, a particular solution is

𝜙3𝑝 =
13
14

1
Pr

The homogenous equation can be integrated without difficulty:
4
3𝑥

𝑑
𝑑𝑥𝜙

3
ℎ + 𝜙3ℎ = 0

4
3𝑥

𝑑𝜙3ℎ
𝜙3ℎ

= −34
𝑑𝑥
𝑥

ln𝜙3ℎ = −34 ln𝑥 + constant

𝜙3ℎ = 𝐶𝑥−3/4

for a constant 𝐶. Adding the two solutions, we get

𝜙3 = 𝐶𝑥−3/4 + 13
14

1
Pr

Answer
⟵−−−−−−−

The initial condition may be applied at 𝑥 = 𝑥0, where heating starts and 𝛿𝑡 = 0: 𝜙 = 0 at
𝑥 = 𝑥0. This condition is met when

𝐶 = −1314
1
Pr𝑥

3/4
0

Then

𝜙 = {1314
1
Pr[1 − (

𝑥0
𝑥 )

3/4

]}
1/3

The heat flux and the heat transfer coefficient may be calculated from the temperature profile and
boundary layer thickness (as in Sect. 6.5), and, as before, that calculation results in eqn. (6.57):

ℎ = 3
2
𝑘
𝛿
𝛿
𝛿𝑡
= 3
2𝑘

1
𝛿𝜙 (6.57)

Then
Nu𝑥 =

ℎ𝑥
𝑘 = 3

2
𝑥
𝛿𝜙

We again can substitute the square root of eqn. (6.31a), and algebra produces the final result:

Nu𝑥 =
3
2√

13
280(

14
13)

1/3

√
𝑢∞𝑥
𝜈 Pr1/3[1 − (

𝑥0
𝑥 )

3/4

]
−1/3

Nu𝑥 =
0.3313 Re1/2𝑥 Pr1/3

[1 − (𝑥0/𝑥)3/4]
1/3

for 𝑥 > 𝑥0
Answer

⟵−−−−−−−−−−−

This result is given in the text as eqn. (6.64).
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Problem 6.42 Make a spreadsheet to compare eqn. (6.111) to eqn. (6.112) and eqn. (6.113)
for Prandtl numbers of 0.7, 6, 50, and 80 over the range 2 × 105 ⩽ Re𝑥 ⩽ 107, keeping in mind the
ranges of validity of the various equations. What conclusions do you draw?

Solution
The equations of interest are as follow. Equation (6.111) applies for any Pr ⩾ 0.5:

St =
Nu𝑥
Re𝑥Pr

=
𝐶𝑓/2

1 + 12.7(Pr2/3 − 1)√𝐶𝑓/2
Pr ⩾ 0.5 (6.111)

with eqn. (6.102) for 𝐶𝑓:

𝐶𝑓(𝑥) =
0.455

[ln(0.06 Re𝑥)]
2 (6.102)

Equation (6.112) applies for gases (in our case, for Pr = 0.7):

Nu𝑥 = 0.0296 Re0.8𝑥 Pr0.6 for gases (6.112)

And eqn. (6.113) applies for non-metallic liquids (which in our case would cover Pr = 6, 50, 80):

Nu𝑥 = 0.032 Re0.8𝑥 Pr0.43 for nonmetallic liquids (6.113)

These equations can be coded into a spreadsheet range requested, with the results below:
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The calculations show that eqn. (6.112) is within 1.4% of eqn. (6.111) over the range considered.
This difference is within the accuracy of either equation (see pp. 625–626), so we can use the
simpler result, eqn. (6.112), when convenient.

Equation (6.113) is within 12.3% of eqn. (6.111) over the range considered, with the largest
disagreements occurring at a different Reynolds number for different values of Prandtl number.
Equation (6.113) fit the liquid data of Žukauskas and coworkers to about ±15% (see pg. 327),
whereas eqn (6.111) is likely to be more accurate (however, liquid data for flat-plate boundary
layers are scarce; see Lienhard [6.6]).
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Problem 6.43 Liquid metal flows past a flat plate. Axial heat conduction is negligible, and
the momentum b.l. has negligible thickness. (a) If the plate is isothermal, use eqn. (5.54) to derive
eqn. (6.62). (b) Derive the corresponding expression for the local Nusselt number if the plate has
a constant wall heat flux. (c) Find the average Nusselt number in both cases.

Solution
a) Before starting the analysis, consider the problem stated. A liquid metal (Pr ≪ 1) has a

very thin momentum boundary layer relative to its thermal boundary layer (see Sect. 6.4 and
Fig. 6.14). As result, we can neglect the momentum boundary layer and think of a slice
of the liquid metal as a solid vertical slab that flows past the plate at speed 𝑢∞. Because
axial conduction is negligible in this case, all the heat flow is perpendicular to the flat plate.
When the slice of liquid metal reaches the plate, at position 𝑥 = 0 and time 𝑡 = 0, its bottom
temperature changes from 𝑇𝑖 to 𝑇∞. The time needed to reach any downstream position is
𝑡 = 𝑥/𝑢∞. Therefore, the slice of liquid metal experiences the same heat transfer process as
a semi-infinite body if we replace the time 𝑡 by 𝑥/𝑢∞.

Equation (5.54) provides the heat flux to a semi-infinite body whose surface temperature
changes from 𝑇𝑖 to 𝑇∞ at 𝑡 = 0:

𝑞(𝑡) =
𝑘(𝑇∞ − 𝑇𝑖)
√𝜋𝛼𝑡

Converting to the coordinate 𝑥, this expression is

𝑞(𝑥) =
𝑘(𝑇∞ − 𝑇𝑖)
√𝜋𝛼𝑥 ∕ 𝑢∞

The Péclet number is Pe𝑥 = 𝑢∞𝑥 ∕ 𝛼, and we may rearrange to get

𝑞𝑥
𝑘(𝑇∞ − 𝑇𝑖)

= √
Pe𝑥
𝜋

ℎ𝑥
𝑘 = √

Pe𝑥
𝜋

Nu𝑥 = 0.564 Pe1/2𝑥
Answer

⟵−−−−−−−

b) In this case, we need the semi-infinite body solution for a step change in wall heat flux at
𝑡 = 0 (corresponding to 𝑥 = 0). That’s given by eqn. (5.56):

𝑇𝑤(𝑡) − 𝑇𝑖 =
2𝑞𝑤
𝑘 √

𝛼𝑡
𝜋

As before, 𝑡 = 𝑥/𝑢∞. We can rearrange the equation as follows:

𝑞𝑤𝑥
𝑘(𝑇𝑤 − 𝑇𝑖)

= 𝑥
2√

𝜋𝑢∞
𝛼𝑥

ℎ𝑥
𝑘 =

√𝜋
2 √Pe𝑥

Nu𝑥 = 0.886 Pe1/2𝑥
Answer

⟵−−−−−−−
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c) In the uniform wall temperature case, the average heat transfer coefficient is given by
eqn (6.65):

ℎ = 1
𝐿 ∫

𝐿

0
ℎ(𝑥) 𝑑𝑥 = 1

𝐿 ∫
𝐿

0

𝑘
𝑥√

𝑢∞𝑥
𝜋𝛼 𝑑𝑥 = 2𝑘

𝐿 √
𝑢∞𝐿
𝜋𝛼 = 2𝑘

𝐿 √
Pe𝐿
𝜋

so that
ℎ𝐿
𝑘 = 2√

Pe𝐿
𝜋

Nu𝐿 = 1.13 Pe1/2𝐿
Answer

⟵−−−−−−−
which is the same as eqn. (6.69).

In the uniform heat flux case, we use eqn. (6.66)

ℎ =
𝑞𝑤

1
𝐿 ∫

𝐿

0
(𝑇𝑤 − 𝑇∞) 𝑑𝑥

=
𝑞𝑤

1
𝐿 ∫

𝐿

0

2𝑞𝑤
𝑘 √

𝛼𝑥
𝜋𝑢∞

𝑑𝑥
= 1

4
3𝑘√

𝛼𝐿
𝜋𝑢∞

or

Nu𝐿 =
ℎ𝐿
𝑘 =

3√𝜋
4 √

𝑢∞𝐿
𝛼 = 1.33 Pe1/2𝐿

Answer
⟵−−−−−−−
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Problem 6.44 Beginning with eqn. (6.73) show that Nu𝐿 is given over the entire range of Pr
for a laminar b.l. on a flat, constant flux surface by:

Nu𝐿 =
0.696 Re1/2𝐿 Pr1/3

[1 + (0.0205/Pr)2/3]
1/4

(6.124)

Solution
Equation (6.73), for laminar flow over a constant flux surface, is

Nu𝑥 =
0.464 Re1/2𝑥 Pr1/3

[1 + (0.0205/Pr)2/3]
1/4

for Pe𝑥 > 100 (6.73)

The equation applies over the full range of Pr if Pe𝑥 = Re𝑥Pr > 100.
To get the average heat transfer coefficient, ℎ = 𝑞𝑤/𝑇𝑤 − 𝑇∞, we need to find the average

temperature difference with Nu𝑥 = ℎ(𝑥)𝑥/𝑘:

𝑇𝑤 − 𝑇∞ = 1
𝐿 ∫

𝐿

0
(𝑇𝑤 − 𝑇∞) 𝑑𝑥 =

1
𝐿 ∫

𝐿

0

𝑞𝑤
ℎ(𝑥)

𝑑𝑥

= 1
𝐿 ∫

𝐿

0

𝑞𝑤𝑥 [1 + (0.0205/Pr)2/3]
1/4

𝑘(0.464√𝑢∞/𝜈 Pr1/3)
𝑑𝑥
√𝑥

=
𝑞𝑤 [1 + (0.0205/Pr)2/3]

1/4

𝑘(0.464√𝑢∞/𝜈 Pr1/3)
2𝐿3/2
3𝐿

Then we may rearrange, using the definition

Nu𝐿 =
𝑞𝑤𝐿

𝑘(𝑇𝑤 − 𝑇∞)
and finding that

Nu𝐿 =
(3/2)(0.464√𝑢∞𝐿/𝜈 Pr1/3)

[1 + (0.0205/Pr)2/3]
1/4

=
0.696 Re1/2𝐿 Pr1/3

[1 + (0.0205/Pr)2/3]
1/4

Answer
⟵−−−−−−−
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Problem 6.45 For laminar flow over a flat plate flow with Pr > 0.6, how does ℎ for 𝑇𝑤
constant compare to ℎ for 𝑞𝑤 constant? At what location on a plate with 𝑞𝑤 constant is the local
plate temperature the same as the average plate temperature? At what location on a plate with 𝑇𝑤
constant is the local heat flux the same as the average heat flux?

Solution
For the isothermal plate with Pr > 0.6, we use eqns. (6.58) and (6.68):

Nu𝑥 = 0.332 Re1/2𝑥 Pr1/3 (6.58)

Nu𝐿 = 0.664 Re1/2𝐿 Pr1/3 (6.68)
For the uniform flux plate with Pr > 0.6, we use eqns. (6.71) and (6.72):

Nu𝑥 = 0.4587 Re1/2𝑥 Pr1/3 (6.71)

Nu𝐿 = 0.688 Re1/2𝐿 Pr1/3 (6.72)
Then, we have the following for the average heat transfer coefficients:

ℎ = {
0.664 (𝑘/𝐿) Re1/2𝐿 Pr1/3 for 𝑇𝑤 constant
0.688 (𝑘/𝐿) Re1/2𝐿 Pr1/3 for 𝑞𝑤 constant

The ratio is just 0.664/0.688 = 0.965, so the average heat transfer coefficients differ by < 4%.
For the fixed flux plate, the local and average temperatures are:

𝑇(𝑥) − 𝑇∞ =
𝑞𝑤
ℎ(𝑥)

=
𝑞𝑤𝑥
𝑘 (0.4587 Re1/2𝑥 Pr1/3)−1

�𝑇 − 𝑇∞ =
𝑞𝑤
ℎ

=
𝑞𝑤𝐿
𝑘 (0.688 Re1/2𝐿 Pr1/3)−1

Setting these equal, we get
𝑞𝑤𝑥
𝑘 (0.4587 Re1/2𝑥 Pr1/3)−1 =

𝑞𝑤𝐿
𝑘 (0.688 Re1/2𝐿 Pr1/3)−1

or
𝑥(0.4587 𝑥1/2)−1 = 𝐿(0.688 𝐿1/2)−1

Rearranging shows that these temperatures are the same when

𝑥
𝐿 = (0.45870.688 )

2
= 0.445

Answer
⟵−−−−−−−

For the fixed temperature plate, with Δ𝑇 = 𝑇𝑤 − 𝑇∞, the local and average heat fluxes are:

𝑞𝑤 = ℎ(𝑥)Δ𝑇 = 0.332 𝑘𝑥Δ𝑇 Re1/2𝑥 Pr1/3

�𝑞𝑤 = ℎΔ𝑇 = 0.664 𝑘𝐿Δ𝑇 Re1/2𝐿 Pr1/3

Setting these equal and simplifying gives the solution:

0.332 𝑘𝑥Δ𝑇 Re1/2𝑥 Pr1/3 = 0.664 𝑘𝐿Δ𝑇 Re1/2𝐿 Pr1/3

𝑥1/2
𝑥 = 2𝐿1/2

𝐿
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𝑥
𝐿 = (12)

2
= 0.25

Answer
⟵−−−−−−−

Comment: Observe that for uniform flux Δ𝑇 increases as √𝑥, whereas for uniform temperature
𝑞𝑤 decreases as 1/√𝑥.
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Problem 6.46 Two power laws are available for the skin friction coefficient in turbulent
flow: � 5 (G) = 0.027Re−1/7

G and � 5 (G) = 0.059 Re−1/5
G . The former is due to White and the latter

to Prandtl [6.4]. Equation (6.102) is more accurate and wide ranging than either. Plot all three
expressions on semi-log coordinates for 105 6 ReG 6 109. Over what range are the power laws in
reasonable agreement with eqn. (6.102)? Also plot the laminar equation (6.33) on same graph for
ReG 6 106. Comment on all your results.

Solution The figure shows the two power laws and the mentioned turbulent and laminar
expressions:

� 5 =
0.455[

ln(0.06 ReG)
]2 (6.102)

� 5 =
0.664
√

ReG
(6.33)

The 1 ⁄7 power law is within 5% of eqn. (6.102) for 3.5 × 105 6 ReG 6 109, while the 1 ⁄5 power law
is within 5% for 105 6 ReG 6 5 × 107. We also observe that skin friction in laminar flow is far less
than in turbulent flow.

105 106 107 108 109
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

turbulent

laminar

Reynolds number, Rex

N
us

se
lt

nu
m

be
r,

C
f

Eqn. (6.102), Cf = 0.455/[ln (0.06 Rex)]2

Cf = 0.027/Re1/7
x

Cf = 0.059/Re1/5
x

Eqn. (6.33), Cf = 0.664/Re1/2
x
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Problem 6.47 Reynolds et al. [6.27] provide the following measurements for air flowing over
a flat plate at 127 ft/s with )∞ = 86 °F and )F = 63 °F. Plot these data on log-log coordinates as
NuG vs. ReG , and fit a power law to them. How does your fit compare to eqn. (6.112)?

ReG×10−6 St×103 ReG×10−6 St×103 ReG×10−6 St×103

0.255 2.73 1.353 2.01 2.44 1.74
0.423 2.41 1.507 1.85 2.60 1.75
0.580 2.13 1.661 1.79 2.75 1.72
0.736 2.11 1.823 1.84 2.90 1.68
0.889 2.06 1.970 1.78 3.05 1.73
1.045 2.02 2.13 1.79 3.18 1.67
1.196 1.97 2.28 1.73 3.36 1.54

Solution The film temperature is ) 5 = (63 + 86)/2 = 74.5 °F = 23.6 °C = 296.8 K. At this
temperature, Table A.6 gives Pr = 0.707. We can convert the given data to NuG = St ReGPr using a
spreadsheet.

To make a fit, we must recognize that Pr does not vary. We have no basis for fitting a Pr exponent.
So, we can fit to

NuG = � Re1G
This fit may be done by linear regression if we first take the logarithm:

ln NuG = ln � + 1 ln ReG
Using a spreadsheet, we can calculate the logarithms and perform the linear regression to find
� = 0.0187 and 1 = 0.814 (A2 = 0.9978), or

NuG = 0.0187 Re0.814
G

The fit is plotted with the equation, and the agreement is excellent.
With some additional effort, we may use the spreadsheet to find that the standard deviation of

the data with respect to the fit is BG = 2.81%, which provides a 95% confidence interval (two-sided
C-statistic for 21 points, ±2.08BG) of ±5.8%.

Equation (6.112) for Pr = 0.712,
NuG = 0.0296 Re0.8

G Pr0.6 = 0.0240 Re0.8
G (6.112)

is also plotted in the figure, but it is systematically higher than this data set and our fit. (Reynolds
et al. had 7 other data sets and reported an overall BG = 4.5% for a ±9% uncertainty at 95%
confidence.)
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105 106 107

103

300

5 × 103

Pr = 0.707 (air)
Tw = constant

Reynolds number, Rex

N
us
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nu
m
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r,

N
u x

Reynolds et al., Run 1
Nux = 0.0296 Re0.8

x Pr0.6 = 0.0240 Re0.8
x

My fit, Nux = 0.0187 Re0.814
x
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Problem 6.48 Blair and Werle [6.36] reported the b.l. data below. Their experiment had a
uniform wall heat flux with a 4.29 cm unheated starting length, D∞ = 30.2 m/s, and )∞ = 20.5°C.

a) Plot these data as NuG versus ReG on log-log coordinates. Identify the regions likely to be
laminar, transitional, and turbulent flow.

b) Plot the appropriate theoretical equation for NuG in laminar flow on this graph. Does the
equation agree with the data?

c) Plot eqn. (6.112) for NuG in turbulent flow on this graph. How well do the data and the
equation agree?

d) At what ReG does transition begin? Find values of 2 and Re; that fit eqn. (6.116b) to these
data, and plot the fit on this graph.

e) Plot eqn. (6.117) through the entire range of ReG .

ReG×10−6 St×103 ReG×10−6 St×103 ReG×10−6 St×103

0.112 2.94 0.362 1.07 1.27 2.09
0.137 2.23 0.411 1.05 1.46 2.02
0.162 1.96 0.460 1.01 1.67 1.96
0.183 1.68 0.505 1.05 2.06 1.84
0.212 1.56 0.561 1.07 2.32 1.86
0.237 1.45 0.665 1.34 2.97 1.74
0.262 1.33 0.767 1.74 3.54 1.66
0.289 1.23 0.865 1.99 4.23 1.65
0.312 1.17 0.961 2.15 4.60 1.62
0.338 1.14 1.06 2.24 4.83 1.62

Solution
a) Calculate the Nusselt number from the values of Stanton number using NuG = St Pr ReG . 

This is easily done with software (or by hand if you are patient) using Pr = 0.71. The results 
are plotted on the next page. The regions can be identified from the changes in slope and 
curvature (part b makes the laminar regime more obvious).

b) The appropriate formula is eqn. (6.116) for a laminar b.l. with an unheated starting length:

Nulam =
0.4587 Re1/2

G Pr1/3[
1 − (G0/G)3/4] 1/3 (6.116)

We have only ReG , not G. However,
G0
G

=
ReG0

ReG
and ReG0 =

D∞G0
a

=
(30.2) (0.0429)
1.516 × 10−5 = 8.546 × 104

With this, the expression can be plotted. The agreement is pretty good. (Equation (6.71) is
shown for comparison.)

c) The equation,
Nuturb = 0.0296 Re0.8

G Pr0.6 (6.112)
is plotted in the figure, with excellent agreement.

d) To use eqn. (6.114b), we can start by visualizing a straight line through the transitional data
on the log-log plot to determine the slope, 2. This slope can be determined iteratively if using
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software, or by drawing the line if working by hand. The slope is well fit by 2 = 2.5. Once
the slope is found, we find the point at which this line intersects the laminar, unheated starting
length curve. That point is well represented by Re; = 500,000 and Nulam(Re; , Pr) = 321.
Hence,

Nutrans = Nulam
(
Re; , Pr

) (ReG
Re;

) 2
= 321

(
ReG

500, 000

) 2.5
(6.114b)

This equation is plotted in the figure, with very good agreement. Note that slightly different
values of Re; and Nulam may produce a good fit, if they lie on the same line. The best approach
is to find Re; and then calculate Nulam from eqn. (6.116).

e) Equation (6.117) uses the laminar, transitional, and turbulent Nusselt numbers from parts
(b), (c), and (d):

NuG (ReG , Pr) =
[
Nu5

G,lam +
(
Nu−10

G,trans + Nu−10
G,turb

) −1/2
] 1/5

(6.117)

This equation is plotted in the figure as well, with very good agreement.

turbulent

105 106 107

102

103

104

laminar

c
=

2.
5

tra
ns

itio
na

l

Pr = 0.71 (air)
q = constantIncreased h caused by

unheated starting length

Reynolds number, Rex

N
us

se
lt

nu
m

be
r,

N
u x

Eqn. (6.116) for x0 = 4.29 cm
Eqn. (6.71), 0.4587 Re1/2Pr1/3

Eqn. (6.114b), c = 2.5,Rel = 500,000
Eqn. (6.112), 0.0296 Re0.8Pr0.6

Eqn. (6.117)
Blair and Werle, u′r/u∞ = 1.0%
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Problem 6.49 Figure 6.21 shows a fit to the following air data from Kestin et al. [6.29]
using eqn. (6.117). The plate temperature was 100 °C (over its entire length) and the free-stream
temperature varied between 20 and 30 °C. Follow the steps used in Problem 6.48 to reproduce that
fit and plot it with these data.

ReG×10−3 NuG ReG×10−3 NuG ReG×10−3 NuG

60.4 42.9 445.3 208.0 336.5 153.0
76.6 66.3 580.7 289.0 403.2 203.0

133.4 85.3 105.2 71.1 509.4 256.0
187.8 105.0 154.2 95.1 907.5 522.0
284.5 134.0 242.9 123.0

Solution
a) The results are plotted on the next page. The regions can be identified from the changes in

slope.
b) The appropriate formula is eqn. (6.58) for a laminar b.l. on a uniform temperature plate:

Nulam = 0.332 Re1/2
G Pr1/3 (6.58)

The film temperature is between 60 and 65 °C, so Pr = 0.703. This equation is plotted on
the figure. Only two data points touch the line, but they are in excellent agreement.

c) The appropriate equation,

Nuturb = 0.0296 Re0.8
G Pr0.6 (6.112)

is plotted in the figure, with very good agreement.
d) To use eqn. (6.114b), we can start by visualizing a straight line through the transitional data

on the log-log plot to determine the slope, 2. The slope is well fit by 2 = 1.7. Once the slope
is found, we find the point at which this line intersects the laminar, unheated starting length
curve. That point is well represented by Re; = 60,000 and Nulam(Re; , Pr) = 72.3. Hence,

Nutrans = Nulam
(
Re; , Pr

) (ReG
Re;

) 2
= 72.3

(
ReG

60000

) 1.7
(6.114b)

This equation is plotted in the figure, with good agreement. Note that the most consistent
approach is to find Re; and then calculate Nulam from eqn. (6.58).

e) Equation (6.117) uses the laminar, transitional, and turbulent Nusselt numbers from parts
(b), (c), and (d):

NuG (ReG , Pr) =
[
Nu5

G,lam +
(
Nu−10

G,trans + Nu−10
G,turb

) −1/2
] 1/5

(6.117)

This equation is plotted in the figure as well, with very good agreement in the turbulent and
transitional ranges. The laminar fit looks good with one data point, but not the other one.
The data themselves make a sharp leap between ReG of 66,300 and 85,300. (Kestin et al.
varied the Reynolds number between these data by increasing the air speed, D∞—these data
are not from spatially sequential points (unlike the data of Blair in Problem 6.48). The onset
of turbulence is an instability, and the change in flow conditions may well have affected the
transition.)
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Eqn. (6.58), 0.332 Re1/2Pr1/3

Eqn. (6.114b), c = 1.7,Rel = 60,000
Eqn. (6.112), 0.0296 Re0.8Pr0.6

Eqn. (6.117), c = 1.7,Rel = 60,000
Kestin et al. (1961)
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Problem 6.50 A study of the kinetic theory of gases shows that the mean free path of a
molecule in air at one atmosphere and 20 °C is 67 nm and that its mean speed is 467 m/s. Use
eqns. (6.45) obtain �1 and �2 from the known physical properties of air. We have asserted that
these constants should be on the order of 1. Are they?

Solution We had found that

` = �1

(
d�ℓ

)
(6.45c)

and
: = �2

(
d2{�ℓ

)
(6.45d)

We may interpolate the physical properties of air from Table A.6: ` = 1.82 × 10−5 kg/m·s,
: = 0.0259 W/m·K, d = 1.21 kg/m3, and 2? = 1006 J/kg·K. In addition, the specific heat capacity
ratio for air is W = 2?/2{ = 1.4.
Rearranging:

�1 =
`

d�ℓ
=

1.82 × 10−5

(1.21) (467) (67 × 10−9)
= 0.481

and

�2 =
:W

d2?�ℓ
=

(0.0259) (1.4)
(1.21) (1006) (467) (67 × 10−9)

= 0.952

The constants are indeed �(1).
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Problem 6.51 The twomost important fluids for thermal engineering are air and water. Using
data from Appendix A, plot the Prandtl number of air and of saturated liquid water from 280 K to
650 K (for water, stop plotting at 644 K, which is very close to the critical point temperature of
647.1 K). Comment on the trends in this chart.

Solution The data are plotted below.

300 350 400 450 500 550 600 650

𝟣

𝟣𝟢

Temperature, T [K]

Pr
an

dt
ln

um
be

r,
Pr

Air Data, Table A.6
Liquid Water Data, Table A.3

This chart shows that Pr for air is essentially independent of temperature with an approximate
value 5/7, in accord with Section 6.4 (note that the kinetic theory predicting a value of 5/7 applies
only to gases).

For liquid water, the Prandtl number drops steeply with rising temperature in the range up
to 400 K. That decrease is mainly caused by the rapid decrease of water’s viscosity with rising
temperature. For temperatures from 400 K to 620 K, water has a Prandtl number on the order of 1,
only about 1/10th the value for cold water. The Prandtl number rises very abruptly near the critical
point temperature, in the interval 640 K to 647 K; the reason is that Pr = 𝜈/𝛼 = 𝜇𝑐𝑝/𝑘 and 𝑐𝑝 →∞
at the critical point.
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Problem 7.5  Compare the h value computed in Example 7.3 with values predicted 

by the Dittus-Boelter, Colburn, McAdams, and Sieder-Tate equations.  Comment 

on this comparison.  

Solution: Taking values of components from Example 7.3, we get:    

  hDB = (k/D)(0.0243)(Pr)0.4(ReD)0.8 

     = (0.661/0.12)(0.0243)(3.61)0.4(412,300)0.8 = 6747 W/m2-K 

  hColburn = (k/D)(0.023)(Pr)1/3(ReD)0.8

      = (0.661/0.12)(0.023)(3.61)1/3(412,300)0.8 = 6193 W/m2-K 

  hMcdams = (k/D)(0.0225)(Pr)0.4(ReD)0.8 = (0.0225/0.0243)hDB 

      = 6247 W/m2-K 

  hST = hColburn(μb/μw)0.14 = 6193(1.75)0.14 = 6193(1.081)  

 = 6698 W/m2-K 

The more accurate Gnielinski equation gives h = 8400 W/m2-K.  Therefore, these 

old equations are low by roughly 20%, 26%, 26%, and 25%, respectively.    

Why such consistently large deviations?  It is because the old correlations 

represent much more limited data sets than Gnielinski’s correlation.  In this case, 

ReD = 412,000 was a good deal higher than the ReD values used to build the old 

correlations.   
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Problem 7.17 Air at 1.38 MPa (200 psia) flows at 12 m/s in an 11 cm I.D. duct. At one
location, the bulk temperature is 40 °C and the pipe wall is at 268 °C. Evaluate ℎ if Y/� = 0.002.

Solution We evaluate the bulk properties at 40°C = 313.15 K. Since the pressure is elevated,
we must use the ideal gas law to find the density of air with the universal gas constant, '◦, and the
molar mass of air, ":

d =
?"

'◦)
=

(1.38 × 106) (28.97)
(8314.5) (313.15) = 15.36 kg/m3

The dynamic viscosity, conductivity, and Prandtl number of a gas depend primarily upon tempera-
ture. At 313 K, ` = 1.917 × 10−5 kg/m·s, : = 0.0274 W/m·K, and Pr = 0.706. Hence,

Re� =
dDav�

`
=

(15.36) (12) (0.11)
1.917 × 10−5 = 1.058 × 106

The friction factor may be calculated with Haaland’s equation, (7.50):

5 =

{
1.8 log10

[
6.9

1.058 × 106 +
(
0.002
3.7

) 1.11
] }−2

= 0.02362

We can see from Fig. 7.6 that this condition lies in the fully rough regime, as confirmed by
eqns. (7.48):

ReY ≡
D∗Y

a
= Re�

Y

�

√
5

8
= (1.058 × 106) (0.002)

√
0.02362

8
= 114.9 > 70

Next, we may compute the Nusselt number from eqn. (7.49):

Nu� =

(
5 /8

)
Re� Pr

1 +
√
5 /8

(
4.5 Re0.2

Y Pr0.5 − 8.48
)

=

(
0.02362/8

)
(1.058 × 106) (0.706)

1 +
√

0.02362/8
(
4.5(114.9)0.2(0.706)0.5 − 8.48

)
= 2061

The temperature difference is quite large, so we should correct for variable properties using
eqn. (7.45):

Nu� = Nu�
���
)1

(
)1

)F

) 0.47
= (2061)

(
313.15
541.15

) 0.47
= 1594

Finally,
ℎ =

:

�
Nu� =

0.0274
0.11

(1594) = 397 W/m2K
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Problem 7.51 Consider the water-cooled annular resistor of Problem 2.49 (Fig. 2.24). The
resistor is 1 m long and dissipates 9.4 kW. Water enters the inner pipe at 47 °C with a mass flow rate
of 0.39 kg/s. The water passes through the inner pipe, then reverses direction and flows through
the outer annular passage, counter to the inside stream.

a) Determine the bulk temperature of water leaving the outer passage.
b) Solve Problem 2.49 if you have not already done so. Compare the thermal resistances

between the resistor and each water stream, '8 and '>.
c) Use the thermal resistances to form differential equations for the streamwise (G-direction)

variation of the inside and outside bulk temperatures ()1,> and )1,8) and an equation the local
resistor temperature. Use your equations to obtain an equation for )1,> − )1,8 as a function
of G.

d) Sketch qualitatively the distributions of bulk temperature for both passages and for the resistor.
Discuss the size of: the difference between the resistor and the bulk temperatures; and overall
temperature rise of each stream. Does the resistor temperature change much from one end
to the other?

e) Your boss suggests roughening the inside surface of the pipe to an equivalent sand-grain
roughness of 500 µm. Would this change lower the resistor temperature significantly?

f) If the outlet water pressure is 1 bar, will the water boil? Hint: See Problem 2.48.
g) Solve your equations from part (c) to find )1,8 (G) and )A (G). Arrange your results in terms

of NTU> ≡ 1/( ¤<2?'>) and NTU8 ≡ 1/( ¤<2?'8). Considering the size of these parameters,
assess the approximation that )A is constant in G.

Solution
a) The answer follows directly from the 1st Law, & = ¤<2?

(
)1,out − )1,in):

Δ)1 = &/( ¤<2?) = 9400/(0.39 · 4180) = 5.77 °C
so )1,out = 47 + 5.77 = 52.8 °C.

b) The inside thermal resistance, '8 = 3.69 × 10−2 K/W, is 23% greater than the outside
resistance, '> = 3.00 × 10−2 K/W.

c) With eqn. (7.10), putting (@|%)inside = ()A − )1,8)/'8! and (@|%)outside = ()A − )1,>)/'>!

where the tube length is ! = 1 m:

¤<2?
3)1,8

3G
=
)A − )1,8

'8!
(1)

− ¤<2?
3)1,>

3G
=
)A − )1,>

'>!
(2)

Recalling the solution of Problem 4.29, we can divide the resistance equation by ! to obtain
a local result (assuming that ℎ is equal to ℎ along the entire passage):

)A − )1,8

'8!
+ )A − )1,>

'>!
=
&

!
= constant (3)

Each of )1,8, )1,>, and )A are functions of G.
By adding eqn. (1) to eqn. (2), and then using eqn. (3),

− ¤<2?
3 ()1,> − )1,8)

3G
=
&

!
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and integrating (with )1,> = )1,8 at G = !), we find

)1,> − )1,8 =
&

¤<2?
(1 − G/!) (4)

d) From working part (a) and Problem 2.49, we already know that the resistor will be much
hotter than the water on either side (194 °C at the end where the water enters and exits). At
any point, )A − )1 � )1,> − )1,8, so that )A − )1,8 ' )A − )1,> ' constant, along the entire
passage. From eqns. (1) and (2), then, the bulk temperature of each stream has a nearly
straight line variation in G, but the outer passage temperature rises a bit faster because the
thermal resistance on that side is lower. Similarly, eqn. (3) shows that the resistor temperature
varies by no more than do the bulk temperatures.

e) Your solution to Problem 2.49 shows that the epoxy layers provide the dominant thermal
resistance on each side. Roughness will make the convection resistance smaller, but con-
vection resistance is only about 10% of the overall resistance. Your boss’s idea will add
cost and pressure drop, but it won’t lower the resistor temperature much. (Suggestion: Find
a diplomatic way to tell him that.)

f) The water will not boil if the highest temperature of the epoxy is below )sat. The hottest
point for the epoxy is in the outlet stream at the exit (where the bulk temperature is greatest).
From the solution to Problem 2.49, using the voltage divider relation from Problem 2.48,

)epoxy − )1,outlet = ()A − )1,outlet)
'conv
'outside

= (194 − 52.8) 0.00307
0.0300

= 14.4 K

The water will not boil.

g) Rearranging eqn. (3) with eqn. (4):

)A − )1,8 + ()A − )1,8)
'8

'>

= &'8 − ()1,> − )1,8)
'8

'>

()A − )1,8)
(
1 + '8

'>

)
= &'8 −

&'8

¤<2?'>

(1 − G/!)

)A − )1,8 = (&'8)
(

'>

'> + '8

) [
1 − 1

¤<2?'>

(1 − G/!)
]

(5)

From eqn. (3), we may estimate that &'8 ≈ ()A − )1,8)/2; thus, we can see that the second
term on the right is very small and could be neglected entirely.

Upon substituting eqn. (5) into eqn. (1) we have:

¤<2?
3)1,8

3G
=
&

!

(
'>

'> + '8

) [
1 − 1

¤<2?'>

(1 − G/!)
]

Integration gives:

)1,8 (G) − )1,in =
&

¤<2?

(
'>

'> + '8

) [
G

!
− 1

¤<2?'>

(
G

!
− G2

2!2

) ]
Because the second term in the square brackets is small, we see that the bulk temperature has
an essentially straight line variation.
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More precisely, we may think of this arrangement as a heat exchanger, where *� = 1/'>

so that

NTU> =
*�

¤<2?
=

1
¤<2?'>

=
1

(3.00 × 10−2) (0.39) (4180)
= 0.020 � 1

From Chapter 3, we recall that a heat exchanger with very low NTU causes very little change
in the temperature of the streams, as is the case here. Putting our result in terms of the outside
and inside NTUs:

)1,8 (G) − )1,in = (&'8)NTU8

(
'>

'> + '8

) [
G

!
− NTU>

(
G

!
− G2

2!2

) ]
(6)

Substituting eqn. (6) into eqn. (5):

)A − )1,in = (&'8)
(

'>

'> + '8

) {
1 − NTU>

(
1 − G

!

)
− NTU8

[
G

!
− NTU>

(
G

!
− G2

2!2

) ] }
Since NTU8 has a similar value to NTU>, the resistor temperature is indeed nearly constant,
with variations on the order of NTU0 = 0.02.
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Problem 8.13 The side wall of a house is 10 m in height. The overall heat transfer coefficient
between the interior air and the exterior surface is 2.5 W/m2K. On a cold, still winter night
)outside = −30 °C and )inside air = 25 °C. What is ℎconv on the exterior wall of the house if Y = 0.9?
Is external convection laminar or turbulent?

Solution The exterior wall is cooled by both natural convection and thermal radiation.
Both heat transfer coefficients depend on the wall temperature, which is unknown. We may solve
iteratively, starting with a guess for )|. We might assume (arbitrarily) that 2⁄3 of the temperature
difference occurs across the wall and interior, with 1⁄3 outside, so that )| ≈ (25 + 30)/3 − 30 =

−11.7 °C = 261.45 K. We may take properties of air at)5 ≈ 250 K, to avoid interpolating Table A.6:
Properties of air at 250 K

thermal conductivity : 0.0226 W/m·K
thermal diffusivity U 1.59 × 10−5 m2/s
kinematic viscosity a 1.135 × 10−5 m2/s
Prandtl number Pr 0.715

The next step is to find the Rayleigh number so that we may determine whether to use a correlation
for laminar or turbulent flow. With V = 1/)5 = 1/(250) K−1:

Ra! =
�V()| − )outside)!3

aU
=

(9.806) (−11.7 + 30) (103)
(250) (1.59) (1.135) (10−10)

= 3.98 × 1012

Since, Ra! > 109, we use eqn. (8.13b) to find Nu!:

Nu! =

{
0.825 +

0.387 Ra1/6
![

1 + (0.492/Pr)9/16
] 8/27

}2

=

{
0.825 + 0.387(3.98 × 1012)1/6[

1 + (0.492/0.715)9/16
] 8/27

}2

= 1738

Hence
ℎconv = (1738) 0.0226

10
= 3.927 W/m2K

The radiation heat transfer coefficient, for )< = (261.45 + 243.15)/2 = 252.30 K, is
ℎrad = 4Yf)3

< = 4(0.9) (5.6704 × 10−8) (252.30)3 = 3.278 W/m2K
The revised estimate of the wall temperature is found by equating the heat loss through the wall

to the heat loss by convection and radiation outside:
(2.5) (25 − )|) = (3.927 + 3.278) ()| + 30)

so that )| = −15.8 °C, which is somewhat lower than our estimate. We may repeat the calculations
with this new value (without changing the property data) finding Ra! = 3.09 × 1012, Nu! = 1799,
ℎconv = 4.065 W/m2K, )< = 250.3 K, and ℎrad = 3.201 W/m2K. Then

(2.5) (25 − )|) = (4.065 + 3.201) ()| + 30)
so that )| = −15.9 °C. Further iteration is not needed. Since the film temperature is very close to
250 K, we do not need to update the property data.

To summarize the final answer, ℎconv = 4.07 W/m2K and most of the boundary layer is turbulent.
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Problem 8.15 In eqn. (8.7), we linearized the temperature dependence of the density differ-
ence. Suppose that a wall at temperature )| sits in water at )∞ = 7 °C. Use the data in Table A.3
to plot |d| − d∞ | and |−d5 V5 ()| − )∞) | for 7 °C 6 )| 6 100 °C, where (..)5 is a value at the film
temperature. How well does the linearization work?

Solution With values from Table A.3, we may perform the indicated calculations and make
the plot. The linearization is accurate to within 10% for temperature differences up to 40 °C, and
within 13% over the entire range.

Properties of water from Table A.3

)
[
°C

]
d
[
kg/m3] V

[
K−1] (d| − d∞) −d5 V5 ()| − )∞)

7 999.9 0.0000436 0.0 0.000
12 999.5 0.000112 −0.4 −0.389
17 998.8 0.000172 −1.1 −1.08
22 997.8 0.000226 −2.1 −2.02
27 996.5 0.000275 −3.4 −3.18
32 995.0 0.000319 −4.9 −4.52
37 993.3 0.000361 −6.6 −6.05
47 989.3 0.000436 −10.6 −9.54
67 979.5 0.000565 −20.4 −18.1
87 967.4 0.000679 −32.5 −28.4

100 958.3 0.000751 −41.6 −36.2
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Problem 8.53 An inclined plate in a piece of process equipment is tilted 30∘ above horizontal.
The plate is 20 cm long in the inclined plane and 25 cm wide. The plate is held at 280 K by a
liquid flowing past its underside. The liquid is cooled by a refrigeration system capable of removing
12 W, but if the heat load exceeds 12 W, the temperature of both the liquid and the plate will begin
to rise. The upper surface of the plate is in contact with ammonia vapor at 300 K and a varying
pressure. An engineer suggests that an increase of the bulk temperature of the liquid will signal
that the pressure has exceeded a level of about 𝑝crit = 551 kPa.

a) Explain why the gas’s pressure will affect the heat transfer to the coolant. What is the
significance 𝑝crit = 551 kPa?

b) Suppose that the pressure is 255.3 kPa. What is the heat transfer rate (W) from the gas to the
plate, if the plate temperature is 𝑇𝑤 = 280 K? Will the coolant temperature rise?

c) Suppose that the pressure rises to 1062 kPa. What is the heat transfer rate if the plate is still
at 𝑇𝑤 = 280 K? Will the coolant temperature rise?

For gaseous ammonia at 255.3 kPa and 290 K: 𝛽 = 0.0040K−1, 𝜌 = 1.86 kg/m3, 𝑐𝑝 = 2314 J/kgK,
𝜇 = 9.75 × 10−6 kg/m3, and 𝑘 = 0.0247W/m⋅K. Take other data from Appendix A.

Solution
a) If the vapor’s pressure were to exceed 𝑝sat(280 K) = 551 kPa, the vapor would condense

on the plate. The vapor cannot condense at lower pressures, and heat transfer would be
by natural convection only. The heat transfer coefficient in condensation is more than 100
times greater than for natural convection, so the heat load would be dramatically higher for
pressures of 551 kPa or more, causing the refrigeration loop to overheat.

b) At 255.3 kPa, the saturation temperature is 𝑇sat = 260 K < 280 K; condensation will not
occur. The film temperature in the vapor is 290 K (which corresponds to the data given).
From the given data, 𝜈 = 5.24 × 10−6 m2/s and 𝛼 = 5.74 × 10−6 m2/s

Replacing 𝑔 with an effective gravity 𝑔 cos 60∘, the Rayleigh number is

Ra𝐿 =
𝑔 cos 60∘𝛽Δ𝑇𝐿3

𝜈𝛼 = (9.81)(1/2)(0.0040)(20)(0.2)3

(5.24 × 10−6)(5.74 × 10−6)
≃ 1.04 × 108

The Nusselt number, from eqn. (8.13a) and using effective gravity, is

Nu𝐿 = 0.68 + 0.67Ra1/4𝐿 [1 + (0.492Pr )
9/16

]
−4/9

= 0.68 + 0.67(1.04 × 108)1/4 [1 + (0.4920.912)
9/16

]
−4/9

≃ 54.0

Then,

ℎ = Nu𝐿
𝑘
𝐿 = 54.0 (0.02470.2 ) = 6.67W/m2K

and the heat transfer is

𝑄 = ℎ𝐴(𝑇∞ − 𝑇𝑤) = (6.67)(0.2)(0.25)(300 − 280) ≃ 6.67W < 12W

and the plate and liquid temperatures will not rise.
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c) At a pressure of 1062 kPa, the saturation temperature is 𝑇sat = 300K > 280K; condensation
occurs. The Nusselt number, from eqn. (8.62b) and using effective gravity, is

Nu𝐿 = 0.9428 [
𝜌𝑓(𝜌𝑓 − 𝜌𝑔)𝑔 cos 60∘ℎ′𝑓𝑔𝐿

3

𝜇𝑘(𝑇sat − 𝑇𝑤)
]
1/4

= 1814

Here 𝜇, 𝑘, and 𝜌𝑓 are properties of the liquid at a film temperature of 290 K, and 𝜌𝑔 is for
saturated ammonia vapor at 300 K. A simple calculation shows that Ja = 0.078 and so with
eqn. (8.61), ℎ′𝑓𝑔 ≅ ℎ𝑓𝑔(1.040) = 1204 kJ/kg. Then

Nu𝐿 = 0.9428 [(614.7)(614.7 − 8.244)(9.81)(0.5)(1204 × 103)(0.2)3

(1.39 × 10−4)(0.488)(20) ]
1/4

= 1898

The heat transfer coefficient is

ℎ = Nu𝐿
𝑘
𝐿 = 4632W/m2K

The heat transfer rate is
𝑄 = ℎ𝐴(𝑇sat − 𝑇𝑤) = (4632)(0.2)(0.25)(20) = 4632W ≫ 12W

and the plate and liquid temperatures will rise.

Comment: The ammonia vapor is part (b) is superheated, but still not far from saturation
conditions. The vapor does not behave like an ideal gas in this range. The property data given are
from the NIST Webbook, https://webbook.nist.gov/chemistry/fluid/.
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Problem 8.54 The film Reynolds number Re𝑐 in eqn. (8.72) was based on the thickness, 𝛿.
Show that the Reynolds number would be four times larger if it were based on the hydraulic diameter
of the film.

Solution The hydraulic diameter is defined in eqn. (7.60) as

𝐷ℎ ≡
4𝐴𝑐
𝑃

where 𝐴𝑐 is the cross-sectional area and 𝑃 is the passage’s wetted perimeter. For a unit width of
falling film having a local thickness 𝛿

𝐷ℎ =
4(1)(𝛿)
(1)

= 4𝛿

because the wetted perimeter is the part of the film in contact with the wall, excluding the free
surface: 𝑃 = 1.

The film Reynolds number from eqn. (8.72) is

Re𝑐 =
𝜌𝑢av𝛿
𝜇 =

Γ𝑐
𝜇

which takes the film thickness as the length scale for the Reynolds number. If instead we define the
Reynolds number using the hydraulic diameter, we have

Rewp =
𝜌𝑢av𝐷ℎ
𝜇 =

4𝜌𝑢av𝛿
𝜇 =

4Γ𝑐
𝜇

Thus
Rewp = 4Re𝑐

Answer
⟵−−−−−−−
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Problem 8.55 A characteristic length scale for a falling liquid film is ℓ = (a2/�)1/3. If the
Nusselt number for a laminar film condensing on plane wall is written as Nuℓ ≡ ℎℓ/: , derive an
expression for Nuℓ in terms of Re2. Show that, when d5 � d�, Nuℓ =

(
3Re2

)−1/3.

Solution Starting with eqns. (8.58) and (8.72), we have

NuG =
ℎG

:
=
G

X
(8.58)

and

Re2 =
d5
(
d5 − d�

)
�X3

3`2 =
d5Δd �X

3

3`2 (8.72)

Then, by replacing G by ℓ

Nuℓ =
ℎℓ

:
=
ℓ

X
and, by rearranging Re2,

X =

(
3`a
�Δd

Re2
)1/3

So

Nuℓ =
(
a2

�

)1/3 (
�Δd

3`a

)1/3
Re−1/3

2 =

(
Δd

3d5

)1/3
Re−1/3

2

and when d5 � d�, Δd ' d5 so

Nuℓ ' (3Re2)−1/3 for d5 � d�
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Problem 8.57 Perform the integration for ℎ in Example 8.8 and obtain eqn. (8.67). Hint: Re-
call that the gamma function, Γ(𝑧), is a tabulated special function. It may be shown that [8.42,§9.51]:

∫
𝜋/2

0
cos2𝑚−1𝜃 sin2𝑛−1𝜃 𝑑𝜃 = Γ(𝑚)Γ(𝑛)

2 Γ(𝑚 + 𝑛)
for𝑚, 𝑛 > 0

Solution The integral in question is

ℎ = 2
𝜋𝐷 ∫

𝜋𝐷/2

0

1
√2

𝑘
𝑥[

(𝜌𝑓 − 𝜌𝑔)ℎ′𝑓𝑔𝑥
3

𝜈𝑘(𝑇sat − 𝑇𝑤)
𝑥𝑔𝑒(sin 2𝑥/𝐷)4/3

∫𝑥0 (sin 2𝑥/𝐷)
1/3 𝑑𝑥

]
1/4

𝑑𝑥

This integral may look formidable, but it is in fact merely messy. Let us start by lumping all the
constants

ℂ ≡ 2
𝜋𝐷

𝑘
√2

[
(𝜌𝑓 − 𝜌𝑔)ℎ′𝑓𝑔𝑔𝑒
𝜈𝑘(𝑇sat − 𝑇𝑤)

]
1/4

so that

ℎ = ℂ∫
𝜋𝐷/2

0
[ (sin 2𝑥/𝐷)4/3

∫𝑥0 (sin 2𝑥/𝐷)
1/3 𝑑𝑥

]
1/4

𝑑𝑥

= ℂ∫
𝜋𝐷/2

0
(sin 2𝑥/𝐷)1/3[∫

𝑥

0
(sin 2𝑥/𝐷)1/3 𝑑𝑥]

−1/4

𝑑𝑥

where the factors in 𝑥 canceled out. Now define

𝑓(𝑥) ≡ (sin 2𝑥/𝐷)1/3

and we have

ℎ = ℂ∫
𝜋𝐷/2

0
𝑓(𝑥) [∫

𝑥

0
𝑓(𝑥) 𝑑𝑥]

−1/4

𝑑𝑥

Further, we can take advantage of the derivative of an integral. Let

𝐹(𝑥) ≡ ∫
𝑥

0
𝑓(𝑥) 𝑑𝑥

Then
𝑑𝐹
𝑑𝑥 = 𝑓(𝑥)

So,

ℎ = ℂ∫
𝜋𝐷/2

0

𝑑𝐹
𝑑𝑥 [𝐹(𝑥)]

−1/4𝑑𝑥 = 4
3ℂ [𝐹(𝑥)]

3/4 |||

𝜋𝐷/2

0
= 4
3ℂ [𝐹(𝜋𝐷/2)]

3/4

Now, with our previous definitions

𝐹(𝜋𝐷/2) = ∫
𝜋𝐷/2

0
(sin 2𝑥/𝐷)1/3 𝑑𝑥
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which corresponds to the integral given in the problem statement for𝑚 = 1/2 and 𝑛 = 2/3, where
we put 𝜃 = 2𝑥/𝐷:

𝐹(𝐷/2) = ∫
𝜋𝐷/2

0
(sin 2𝑥/𝐷)1/3 𝑑𝑥 = 𝐷

2 ∫
𝜋

0
(sin 𝜃)1/3 𝑑𝜃 = 𝐷∫

𝜋/2

0
(sin 𝜃)1/3 𝑑𝜃 = 𝐷 Γ(1/2) Γ(2/3)

2 Γ(7/6)
From tabulated results, we find that

Γ(1/2) = √𝜋, Γ(2/3) = 1.3541⋯ , Γ(7/6) = 1
6Γ(1/6) =

1
6(5.5663⋯)

Collecting all this:

ℎ = 4
3ℂ [𝐷

Γ(1/2) Γ(2/3)
2 Γ(7/6) ]

3/4
= 4√2𝑘

3𝜋𝐷 [
(𝜌𝑓 − 𝜌𝑔)ℎ′𝑓𝑔𝑔𝑒𝐷

3/4

𝜈𝑘(𝑇sat − 𝑇𝑤)
]
1/4

[
6√𝜋(1.3541)
2(5.5663) ]

3/4

and finally

Nu𝐷 = ℎ𝐷
𝑘 = {4

√2
3𝜋 [

3√𝜋(1.3541)
(5.5663) ]

3/4

} [
𝑔𝑒(𝜌𝑓 − 𝜌𝑔)ℎ′𝑓𝑔𝐷

3

𝜈𝑘(𝑇sat − 𝑇𝑤)
]
1/4

= 0.7280 [
𝑔𝑒(𝜌𝑓 − 𝜌𝑔)ℎ′𝑓𝑔𝐷

3

𝜈𝑘(𝑇sat − 𝑇𝑤)
]
1/4

Answer
⟵−−−−−−−
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Problem 8.59 Using data from Tables A.4 and A.5, plot V for saturated ammonia vapor for
200 K 6 ) 6 380 K, together with the ideal gas expression VIG = 1/) . Also calculate / = %/d') .
Is ammonia vapor more like an ideal gas near the triple point or critical point temperature?

Solution

200 220 240 260 280 300 320 340 360 380
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Temperature [K]

β
[K

−1
]

Data from Table A.4
Ideal gas, βIG = 1/T

With ? and d from Table A.5, and using ' = '◦/"NH3 = 8314.5/17.031 = 488.2 J/kg-K, we
find / as below. For an ideal gas, / = 1.

) [°C] / ) [°C] /

200 0.9944 300 0.8788
220 0.9864 320 0.8263
240 0.9722 340 0.7606
260 0.9505 360 0.6784
280 0.9198 380 0.5716

Saturated ammonia vapor only behaves like an ideal gas for temperatures close the triple point
temperature (195.5 K) and is highly non-ideal in the vicinity of the critical point temperature
(405.4 K). This behavior underscores the importance of using data for V when dealing with vapors
near saturation conditions.
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Problem 9.37   

 P_vap (Pa) T_sat (K) T_sat (C) 

 1000 280.12 6.97 

 10000 318.96 45.81 

 100000 372.76 99.61 

    

t (C) Delta T (K) q (kW/m^2) h (kW/m^2K) 

6.97 1 25.1 25.1 

 2 52.9 26.5 

 3 83.7 27.9 

 4 117.2 29.3 

 5 153.6 30.7 

 6 192.9 32.1 

 7 234.9 33.6 

 8 279.8 35.0 

    

45.81 1 113.0 113.0 

 2 238.8 119.4 

 3 377.3 125.8 

 4 528.7 132.2 

 5 692.9 138.6 

 6 869.8 145.0 

 7 1059.6 151.4 

 8 1262.1 157.8 

    

99.61 1 210.3 210.3 

 2 444.5 222.2 

 3 702.5 234.2 

 4 984.2 246.1 

 5 1289.8 258.0 

 6 1619.2 269.9 

 7 1972.4 281.8 

 8 2349.4 293.7 
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Surface at 100 C
Delta T P_0 Delta P rho_0 factor mdot (kg/m^2s) q (MW/m^2)

0 101420.0 0 0.59817 0.000345552 0.0 0
1 105090.0 3670 0.61841 0.000345231 1.3 3
2 108870.0 7450 0.6392 0.000344907 2.6 6
3 112770.0 11350 0.66056 0.000344564 3.9 9
4 116780.0 15360 0.6825 0.000344241 5.3 12
5 120900.0 19480 0.70503 0.000343941 6.7 15
6 125150.0 23730 0.72816 0.000343615 8.2 18
7 129520.0 28100 0.7519 0.000343299 9.6 22
8 134010.0 32590 0.77627 0.000343 11.2 25
9 138630.0 37210 0.80127 0.000342697 12.8 29

10 143380.0 41960 0.82693 0.000342402 14.4 32

T_0 373.15
p_0 101420
R 461.404
coef 1.6678
sigma 0.31
factor1 3.0329914
hfg 2246000 treat as constant

Surface at 40 C
Delta T P_0 Delta P rho_0 factor mdot (kg/m^2s) q (MW/m^2)

0 7384.9 0 0.051242 0.000372416 0.0 0.0
1 7787.8 402.9 0.053871 0.00037186 0.1 0.3
2 8209.6 824.7 0.056614 0.000371306 0.3 0.7
3 8650.8 1265.9 0.059474 0.000370756 0.5 1.1
4 9112.4 1727.5 0.062457 0.000370213 0.6 1.5
5 9595 2210.1 0.065565 0.00036967 0.8 1.9
6 10099 2714.1 0.068803 0.000369146 1.0 2.3
7 10627 3242.1 0.072176 0.000368579 1.2 2.8
8 11177 3792.1 0.075688 0.000368067 1.4 3.2
9 11752 4367.1 0.079343 0.000367534 1.6 3.7

10 12353 4968.1 0.083147 0.000366984 1.8 4.2
40 C

T_0 313.15
p_0 7384.9
R 461.403996
coef 1.6678
sigma 0.31
factor1 3.0329914
hfg 2306000 treat as constant

Problem 9.38
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Problem 10.21 A smooth gray object of emittance 𝜀1 and area 𝐴1 and does not view itself
and sits in a much larger isothermal environment, 𝐴2. Suppose that the object is roughened by
making many small cavities covering its entire surface, without changing the radiative properties
of the material. The rough surface now has an area 𝐴𝑟 > 𝐴1. The projected area of the rough
surface is a smooth surface that just touches the peaks of the cavities, and it has the same area,
𝐴1, as the original smooth surface. Starting with eqn. (10.23), show that the roughened surface
emits radiation to the surroundings as if the original smooth surface had become “blacker”. Further
show that the effective emittance after roughening is bounded between 𝜀1 and 1. Hint: Because the
surroundings are effectively black, the value of 𝐴2 does not affect the heat transfer: shrink 𝐴2 until
it reaches the projected surface.

Solution
The rough surface and surroundings form a two body exchange problem, with eqn. (10.23):

𝑄net1-2 =
𝜎(𝑇4

1 − 𝑇4
2 )

(
1 − 𝜀1
𝜀1𝐴𝑟

) +
1

𝐴𝑟𝐹𝑟-2
+ (

1 − 𝜀2
𝜀2𝐴2

)
=

𝜎(𝑇4
1 − 𝑇4

2 )

(
1 − 𝜀1
𝜀1𝐴𝑟

) +
1

𝐴𝑟𝐹𝑟-2

(*)

where 𝜀2 = 1 because the surrounding environment is effectively black. Because the surroundings
are effectively black, the value of𝐴2 does not affect the heat transfer. Thus, for purposes of analysis,
we can think of tightening the black surface 2 onto the roughened object so that it becomes the
projected surface, with area 𝐴2 = 𝐴1 < 𝐴𝑟.

The projected surface, which is now surface 2, touches the top edge of each small cavity and
may be considered to be stretched flat above every cavity. Therefore, surface 2 does not see itself
and 𝐹2-𝑟 = 1. We can eliminate the view factor by setting 𝐴𝑟𝐹𝑟-2 = 𝐴2𝐹2-𝑟 = 𝐴2 in eqn. (*):

𝑄net1-2 =
𝜎(𝑇4

1 − 𝑇4
2 )

(
1 − 𝜀1
𝜀1𝐴𝑟

) +
1
𝐴2

=
𝜎(𝑇4

1 − 𝑇4
2 )

(
1 − 𝜀1
𝜀1𝐴𝑟

) +
1
𝐴1

where the second step follows since we know 𝐴2 = 𝐴1. Rearranging, we have

𝑄net1-2 = 𝐴1
1

𝐴1
𝐴𝑟
( 1𝜀1

− 1) + 1
⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

=ℱ1-2

𝜎(𝑇4
1 − 𝑇4

2 ) = 𝐴1ℱ1-2𝜎(𝑇4
1 − 𝑇4

2 )

Comparing to the expression for a small gray object in a large isothermal environment, eqn. (10.30),
we see that the effective emissivity of the roughened surface is simply the transfer factor, ℱ1-2:

𝜀1,rough = ℱ1-2 =
𝐴2
𝐴𝑟
( 1𝜀1

− 1) + 1

When 𝐴𝑟 ≫ 𝐴1, 𝜀1,rough → 1. When 𝐴𝑟 → 𝐴1, 𝜀1,rough → 𝜀1. In every case, 𝜀1,rough > 𝜀1 Thus, the
rough surface is effectively “blacker” than the original surface.

Comment 1: This analysis implicitly assumes that the radiosity of the cavities is uniform, and as
a result it is strictly valid only for spherical cavities (Donald K. Edwards, Radiation Heat Transfer
Notes, [10.3]). However, the general principle applies to other cavity shapes: rougher surfaces are
effectively blacker, with emissivity bounded between 𝜀1 and 1.

Comment 2: We have also implicitly assumed the cavities to be large compared to the wave-
lengths of radiation.
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Problem 10.22 A 30 ft by 40 ft house has a conventional sloping roof with a 30.3° pitch
and the peak running in the 40 ft direction. Calculate the temperature of the roof in 20°C still air
when the sun is overhead: (a) if the roof is made of wooden shingles; and (b) if it is commercial
aluminum sheet. The incident solar energy is 670W/m2, the effective sky temperature is 22°C, the
roofing materials are gray radiators, and the roof is very well insulated.

Solution
The configuration is sketched in the figure. When the sun is directly overhead with an intensity

of 𝐼0 = 670W/m2, the incident solar radiation per unit area of roof is

𝑞sol = 𝐼0 cos𝜙 = 670 cos(30.3°) = 579W/m2

where 𝜙 = 30.3° is the roof pitch.

𝐼0

𝜙 = 30.3°

Roof

𝜃

15 ft

An energy balance on the roof must account for solar energy absorption, infrared radiation
exchange with the sky, natural convection to the still air, and heat transfer through the roof into the
house. Since the roof is said to be very well insulated, we will neglect heat transfer into the roof.
Then:

𝐴roof𝛼sol𝑞sol = 𝐴roof [𝜀IR𝜎(𝑇4
roof − 𝑇4

sky) + ℎnc(𝑇roof − 𝑇air)] (*)
The natural convection heat transfer coefficient can be calculated with eqn. (8.35) by putting 𝑔 cos 𝜃
into the Rayleigh number (as discussed on pgs. 432–434), where in this case 𝜃 = 59.7°:

Nu𝐿 = 0.14 Ra1/3𝐿 (1 + 0.0107 Pr
1 + 0.01 Pr ) (8.35)

Let’s take air properties a convenient guessed value of 𝑇𝑓 = 310 K (37°C) using Table A.6:

Pr = 0.709, 𝑘 = 0.02684W/m⋅K, 𝜈 = 1.659 × 10−5 m2/s, 𝛼 = 2.304 × 10−5 m2/s

The length of the roof, 𝐿 = (15 ft)(0.3048 m/ft) ∕ cos(30.3°) = 5.30 m. Then

ℎnc = (0.14)𝑘𝐿(
𝑔 cos 𝜃 𝛽 𝐿3Δ𝑇

𝜈𝛼 )
1/3

(1 + 0.0107 Pr
1 + 0.01 Pr )

= (0.14)0.026845.30⏟⎵⎵⎵⏟⎵⎵⎵⏟
=0.0007090 W/m2K

((9.806) cos(59.7°)(1/310)(5.30)
3Δ𝑇

(1.659 × 10−5)(2.304 × 10−5) )
1/3

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
=1839(Δ𝑇)1/3

(1 + 0.0107(0.709)
1 + 0.01(0.709) )

⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
=1.000

= 1.304(Δ𝑇)1/3 W/m2K

where Δ𝑇 = (𝑇roof − 𝑇air).
We have two different roofing materials to consider, wood shingles and commercial aluminum

sheet. Both materials are gray, so that solar and infrared properties are the same: 𝛼solar = 𝜀sol = 𝜀IR.
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From Table 10.1, for commercial aluminum sheet we have 𝛼sol = 𝜀IR = 0.09, and for wooden
shingles we take 𝛼sol = 𝜀IR ≅ 0.85.

We may rearrange eqn. (*), using the information we have gotten and putting temperatures in
kelvin:

ℎnc(𝑇roof − 𝑇air) = 𝜀IR[𝑞sol − 𝜎(𝑇4
roof − 𝑇4

sky)]

1.304(𝑇roof − 293)4/3 = 𝜀IR[579 − (5.67034 × 10−8(𝑇4
roof − 2954)]

This equation must be solved iteratively, guessing 𝑇roof and substituting it into one side or the
other. Some experimentation will show you that a stable (convergent) iteration is obtained when
𝜀IR = 0.09 if the substitution is on the right-hand side, but that the substitution must be on the
left-hand side when 𝜀IR = 0.85. We stop iterating when the difference is below 0.1 K, which is well
beyond the accuracy of the given information.

𝜀IR 0.09 0.85

𝑇initial guess [K] 310.0 330.0
306.7 346.7
308.0 324.7
307.2 333.0
307.7 344.6

𝑇converged [K] 307.6 335.0
⋮

etc.
⋮

𝑇converged [K] 339.4

Summarizing:

𝑇roof = {
35°C for aluminum sheet
66°C for wooden shingles

Answer
⟵−−−−−−−

Comment 1: The uncertainty in the radiative properties of both materials is significant (and
likewise for the heat transfer coefficient), and so the temperatures are clearly just approximate.

Comment 2: Our guessed film temperature is a bit high for the aluminum roof, but the properties
of air don’t change much over this range. We would gain little accuracy by adjusting the calculation
to a different film temperature.

Comment 3: A 7/12 roof pitch — 7 inches rise per 12 inches (one foot) of run — makes a 30.3°
angle.
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Problem 10.43 Verify 𝐹1-2 for case 4 in Table 10.2. Hint: This can be done without integra-
tion.

Solution
The configuration of three flat surfaces is shown in the figure. We can apply the summation and

reciprocity rules for view factors, eqns. (10.12) and (10.15), for the three surfaces; and then we can
do algebra to find 𝐹1-2. Note that 𝐹𝑖-𝑖 = 0 for flat surfaces.

The rules lead to this set of relationships,
which provide 6 equations for 6 unknowns:

𝐹1-2 + 𝐹1-3 = 1, 𝐹2-1 + 𝐹2-3 = 1,
𝐹3-1 + 𝐹3-2 = 1

𝐴1𝐹1-2 = 𝐴2𝐹2-1, 𝐴1𝐹1-3 = 𝐴3𝐹3-1,
𝐴2𝐹2-3 = 𝐴3𝐹3-2

We can eliminate 𝐹3-1 and 𝐹3-2 with the last two
reciprocity relationships

𝐹3-2 = (𝐴2/𝐴3)𝐹2-3, 𝐹3-1 = (𝐴1/𝐴3)𝐹1-3

and the fact that they sum to 1:

𝐹3-1 + 𝐹3-2 = (𝐴1/𝐴3)𝐹1-3 + (𝐴2/𝐴3)𝐹2-3 = 1

We may rearrange the second sum rule and
combine with the first reciprocity rule

𝐹2-3 = 1 − 𝐹2-1 = 1 − (𝐴1/𝐴2)𝐹1-2
We can solve for 𝐹1-3 by substituting this result
into the previous equation
(𝐴1/𝐴3)𝐹1-3 + (𝐴2/𝐴3)[1 − (𝐴1/𝐴2)𝐹1-2] = 1
𝐹1-3 = (𝐴3/𝐴1)

− (𝐴3/𝐴1)(𝐴2/𝐴3)[1 − (𝐴1/𝐴2)𝐹1-2]
= (𝐴3/𝐴1) − (𝐴2/𝐴1) + 𝐹1-2

Finally, we may substitute the last relationship for 𝐹1-3 into the first sum rule
𝐹1-2 + 𝐹1-3 = 1 = 𝐹1-2 + (𝐴3/𝐴1) − (𝐴2/𝐴1) + 𝐹1-2

Solving
𝐹1-2 + 𝐹1-2 = 1 − (𝐴3/𝐴1) + (𝐴2/𝐴1)

𝐹1-2 =
1 − (𝐴3/𝐴1) + (𝐴2/𝐴1)

2 =
𝐴1 + 𝐴2 − 𝐴3

2𝐴1

Answer
⟵−−−−−−−
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Problem 10.44 Consider the approximation made in eqn. (10.30) for a small gray object in a
large isothermal enclosure. How small must 𝐴1/𝐴2 be in order to introduce less than 10% error in
ℱ1-2 if the small object has an emittance of 𝜀1 = 0.5 and the enclosure is: a) commercial aluminum
sheet; b) rolled sheet steel; c) rough red brick; d) oxidized cast iron; or e) polished electrolytic
copper. Assume that both the object and its environment have temperatures in the range of 40 to
90°C.

Solution
For an object 1 enclosed by a surface 2, eqn. (10.30) suggests an approximation to the transfer

factor defined in eqn. (10.27) when 𝐴1/𝐴2 ≪ 1:

ℱ1–2 =
1

1
𝜀1
+ 𝐴1
𝐴2⏟
≪1

( 1𝜀2
− 1)

≅ 𝜀1

Equation (10.27) requires that object 1 does not see itself, so 𝐴1/𝐴2 must always be < 1. Further,
as 𝜀2 → 1, the approximation of an effectively black surrounding is more accurate for any value of
𝐴1/𝐴2.

The problem asks us to find the value of 𝐴1/𝐴2 for which
|
|
|
𝜀1 − [ 1𝜀1

+ 𝐴1
𝐴2
( 1𝜀2

− 1)]
−1|
|
|
< 0.10

for 𝜀1 = 0.5 and various values of 𝜀2. We see that the first term inside the absolute value is always
larger than the second term, so we can drop the absolute value signs, substitute 𝜀1 = 0.5 and
rearrange:

0.5 − [2 +
𝐴1
𝐴2
( 1𝜀2

− 1)]
−1

< 0.10

0.4 < [2 +
𝐴1
𝐴2
( 1𝜀2

− 1)]
−1

and, with 0.4 = 2/5,
5
2 > 2 + 𝐴1

𝐴2
( 1𝜀2

− 1)

This gives us a bound on 𝐴1/𝐴2 as a function of 𝜀2:
1

2( 1𝜀2
− 1)

> 𝐴1
𝐴2

(*)

Before charging ahead, let’s remember that 𝐴1/𝐴2 < 1. If we substitute 𝐴1/𝐴2 = 1 in eqn. (*)
and solve for 𝜀2, we find that

𝜀2 <
2
3

In other words, 𝜀2 = 0.667 is the largest value for which we get a 10% error in the approximation.
For any larger value of 𝜀2, the error will be less than 10% even if 𝐴1/𝐴2 → 1!

311-C
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



From here, we can make a table using the emissivities listed in Table 10.1. The area ratio must
be smaller than the value in the last column, which is calculated from eqn. (*) for 𝜀2 < 0.667 and
is simply 1 for larger values of 𝜀2.

Case Material 𝜀2 𝐴1/𝐴2 <

a) commercial aluminum sheet 0.09 0.05
b) rolled sheet steel 0.66 0.97
c) rough red brick 0.93 1
d) oxidized cast iron 0.57–0.66 0.66–0.97
e) polished electrolytic copper 0.02 0.01
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Problem 10.45 Derive eqn. (10.45), starting with eqns. (10.39–10.41).
In older versions of AHTT, the first term in the right-hand side of eqn. (10.45) is incorrect.

Solution
This problem is all algebra. The approach is to substitute eqn. (10.40) for 𝐵𝑖 into eqn. (10.41)

for 𝐻𝑖. That expression can be rearranged as a matrix equation in terms of 𝐻𝑗 and 𝜎𝑇4
𝑗 . Likewise,

eqn. (10.40) can be substituted into eqn (10.39) to obtain an expression for 𝑄net,𝑖 in terms of𝐻𝑖 and
𝜎𝑇4

𝑖 . The two derived expressions can be combined to eliminate 𝐻𝑗, leaving a matrix equation for
𝑄net,𝑗 in terms of 𝜎𝑇4

𝑗 .
Here we go. Equations (10.40) and (10.41) are:

𝐵𝑖 = (1 − 𝜀𝑖)𝐻𝑖 + 𝜀𝑖 𝜎𝑇4
𝑖 (10.40)

𝐻𝑖 =
𝑛

∑
𝑗=1

𝐵𝑗𝐹𝑖-𝑗 (10.41)

Elimination of 𝐵𝑗 from eqn. (10.41) gives

𝐻𝑖 =
𝑛

∑
𝑗=1

[(1 − 𝜀𝑗)𝐻𝑗 + 𝜀𝑗 𝜎𝑇4
𝑗 ] 𝐹𝑖-𝑗 (10.41)

or, noting that∑𝑗𝐻𝑖𝛿𝑖𝑗 = ∑𝑗𝐻𝑗𝛿𝑖𝑗 = 𝐻𝑖,
𝑛

∑
𝑗=1

[𝛿𝑖𝑗 − 𝐹𝑖-𝑗(1 − 𝜀𝑗)]𝐻𝑗 =
𝑛

∑
𝑗=1

𝜀𝑗𝐹𝑖-𝑗 𝜎𝑇4
𝑗 (*)

Next we can write 𝑄net𝑖 = 𝑞net𝑖𝐴𝑖 with eqn. (10.39) and substitute eqn. (10.40) for 𝐵𝑖:

𝑄net𝑖 = 𝐴𝑖(𝐵𝑖 − 𝐻𝑖) = 𝐴𝑖(𝜀𝑖 𝜎𝑇4
𝑖 − 𝜀𝑖𝐻𝑖) (10.39)

so that
𝐻𝑖 = 𝜎𝑇4

𝑖 −
𝑄net𝑖
𝜀𝑖𝐴𝑖

Now eliminate 𝐻𝑗 in eqn. (*) using the above equation:
𝑛

∑
𝑗=1

[𝛿𝑖𝑗 − 𝐹𝑖-𝑗(1 − 𝜀𝑗)] (𝜎𝑇4
𝑗 −

𝑄net𝑗

𝜀𝑗𝐴𝑗
) =

𝑛

∑
𝑗=1

𝜀𝑗𝐹𝑖-𝑗 𝜎𝑇4
𝑗

𝑛

∑
𝑗=1

[𝛿𝑖𝑗 − 𝐹𝑖-𝑗(1 − 𝜀𝑗)] 𝜎𝑇4
𝑗 −

𝑛

∑
𝑗=1

𝜀𝑗𝐹𝑖-𝑗 𝜎𝑇4
𝑗 =

𝑛

∑
𝑗=1

[𝛿𝑖𝑗 − 𝐹𝑖-𝑗(1 − 𝜀𝑗)]
𝑄net𝑗

𝜀𝑗𝐴𝑗
𝑛

∑
𝑗=1

[𝛿𝑖𝑗 − 𝐹𝑖-𝑗(1 − 𝜀𝑗)]
𝑄net𝑗

𝜀𝑗𝐴𝑗
=

𝑛

∑
𝑗=1

(𝛿𝑖𝑗 − 𝐹𝑖-𝑗) 𝜎𝑇4
𝑗

Multiplying through by 𝐴𝑖 gives the solution, eqn. (10.45):
𝑛

∑
𝑗=1

[
𝛿𝑖𝑗
𝜀𝑖
−
(1 − 𝜀𝑗)
𝜀𝑗𝐴𝑗

𝐴𝑖𝐹𝑖-𝑗]𝑄net𝑗 =
𝑛

∑
𝑗=1

(𝐴𝑖𝛿𝑖𝑗 − 𝐴𝑖𝐹𝑖-𝑗) 𝜎𝑇4
𝑗 (10.45)
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Problem 10.46 (a) Derive eqn. (10.31), which is for a single radiation shield between two
bodies. Include a sketch of the radiation network. (b) Repeat the calculation in the case when two
radiation shields lie between body 1 and body 2, the second just outside the first.

Solution
a) The radiation network connects the black body emissive power of body 1, 𝑒𝑏1 = 𝜎𝑇4

1 , to
that of the shield, 𝑒𝑏𝑠, to that of body 2, 𝑒𝑏2 = 𝜎𝑇4

2 . The emissive powers are separated
from the radiosities by a surface resistance, and the radiosities are separated by a geometrical
resistance.

𝑒𝑏1= 𝜎𝑇4
1

1−𝜀1
𝜀1𝐴1

𝑄net1–2

𝐵1 1

𝐴1𝐹1–s

𝐵𝑠,𝑖
1−𝜀𝑠
𝜀𝑠𝐴𝑠

𝜎𝑇4
𝑠

1−𝜀𝑠
𝜀𝑠𝐴𝑠

𝐵𝑠,𝑜
1

𝐴𝑠𝐹s–2

𝐵2
1−𝜀2
𝜀2𝐴2

𝑒𝑏2= 𝜎𝑇4
2

We assume that body 1 views only the inside of the radiation shield and that the outside
of the radiation shield views only body 2. Thus, 𝐹1–s = 1 and 𝐹s–2 = 1.

All net heat transfer leaving body 1 goes to body 2, so a single current, 𝑄net1–2, net travels
through all resistors. To calculate this current, we simply divide the sum of the resistances
into the difference between the two given emissive powers. The result is eqn. (10.31):

𝑄net1–2 =
𝜎(𝑇4

1 − 𝑇4
2 )

(
1 − 𝜀1
𝜀1𝐴1

+
1
𝐴1

+
1 − 𝜀2
𝜀2𝐴2

) + 2(
1 − 𝜀𝑠
𝜀𝑠𝐴𝑠

) +
1
𝐴𝑠⏟⎵⎵⎵⏟⎵⎵⎵⏟

added by shield

(10.31)

b) The second radiation shield adds three more resistances: i) a geometrical resistance between
the first and second shield; ii) a surface resistance on the inside of the second shield; and
iii) a surface resistance on the outside of the second shield. The three resistances are simply
added in series between the original shield and body 2.

We may reasonably assume the inner shield sees only the outer shield (so that the view
factor is one), and that the outer shield sees only the body 2 (so that the view factor is also
one). Further, we assume that the emittances of shield 1 and shield 2 are the same. The heat
flow is reduced to:

𝑄net1–2 =
𝜎(𝑇4

1 − 𝑇4
2 )

(
1 − 𝜀1
𝜀1𝐴1

+
1
𝐴1

+
1 − 𝜀2
𝜀2𝐴2

) + 2(
1 − 𝜀𝑠
𝜀𝑠𝐴𝑠

) +
1
𝐴𝑠⏟⎵⎵⎵⏟⎵⎵⎵⏟

added by shield 1

+2(
1 − 𝜀𝑠
𝜀𝑠𝐴𝑠2

) +
1
𝐴𝑠2⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

added by shield 2

Comment: Radiation shields are often made of reflective metals with low 𝜀, but even a
shield that is black adds additional geometrical resistance that can significantly lower the
radiation heat transfer.
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Problem 10.47 Use eqn. (10.32) to find the net heat transfer from between two specularly
reflecting bodies that are separated by a specularly reflecting radiation shield. Compare the result
to eqn. (10.31). Does specular reflection reduce the heat transfer?

Solution
Equation (10.32) provides the radiation heat transfer between two specularly reflecting bodies,

one of which encloses (body 2) the other (body 1). We may be consider the added radiation shield
as a body which encloses body 1 and is enclosed by body 2. Then we can apply eqn. (10.32)
separately to body 1 and the shield and to the shield and body 2.

The network, using the transfer factors inside and outside the shield, is

𝑒𝑏1= 𝜎𝑇4
1

1

𝐴1ℱ1–s

𝜎𝑇4
𝑠

1

𝐴𝑠ℱs–2

𝑒𝑏2= 𝜎𝑇4
2

To calculate the heat transfer, we simply divide the sum of the two resistances into the difference
between the two given emissive powers and substitute eqn. (10.32) for ℱ1–s and ℱs–2:

𝑄net1–2 =
𝜎(𝑇4

1 − 𝑇4
2 )

1
𝐴1ℱ1–s

+ 1
𝐴𝑠ℱs–2

=
𝜎(𝑇4

1 − 𝑇4
2 )

1
𝐴1
( 1𝜀1

+ 1
𝜀𝑠
− 1) + 1

𝐴𝑠
( 1𝜀𝑠

+ 1
𝜀2
− 1)

For the purpose of comparing to eqn. (10.31), we can rearrange the denominator by adding and
subtracting one:

𝑄net1–2 =
𝜎(𝑇4

1 − 𝑇4
2 )

1
𝐴1
( 1𝜀1

− 1 + 1 + 1
𝜀𝑠
− 1) + 1

𝐴𝑠
( 1𝜀𝑠

− 1 + 1 + 1
𝜀2
− 1)

=
𝜎(𝑇4

1 − 𝑇4
2 )

(
1 − 𝜀1
𝜀1𝐴1

+ 1
𝐴1

+
1 − 𝜀𝑠
𝜀𝑠𝐴1

) + (
1 − 𝜀𝑠
𝜀𝑠𝐴𝑠

+ 1
𝐴𝑠

+ 1 − 𝜀2
𝜀2𝐴𝑠

)

=
𝜎(𝑇4

1 − 𝑇4
2 )

(
1 − 𝜀1
𝜀1𝐴1

+ 1
𝐴1

+ 1 − 𝜀2
𝜀2𝐴𝑠

) + (
1 − 𝜀𝑠
𝜀𝑠𝐴1

+
1 − 𝜀𝑠
𝜀𝑠𝐴𝑠

+ 1
𝐴𝑠
)

The two areas in red, 𝐴𝑠 and 𝐴1, are smaller than the corresponding areas in eqn. (10.31), which
were 𝐴2 and 𝐴𝑠, respectively. That difference will tend to increase the two resistances and decrease
the heat fluxes.

Specular reflection decreases the heat transfer.
Answer

⟵−−−−−−−
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Problem 10.48 Some values of the monochromatic absorption coefficient for liquid water,
as 𝜌𝜅𝜆 (cm−1), are listed in Table 10.6 [10.5]. For each wavelength, find the thickness of a layer
of water for which the monochromatic transmittance is 10%. On this basis, discuss the colors one
might see underwater and water’s infrared emittance.

𝜆 (µm) 𝜌𝜅𝜆 (cm−1) Color

0.3 0.0067
0.4 0.00058 violet
0.5 0.00025 green
0.6 0.0023 orange
0.8 0.0196
1.0 0.363
2.0 69.1

2.6–10.0 > 100.

Solution
We may use Beer’s Law in the form of eqn. (10.49)

𝜏𝜆 = exp(−𝜌𝜅𝜆𝐿) (10.49)
Setting 𝜏𝜆 = 0.10 and solving for 𝐿:

𝐿 = −
ln 𝜏𝜆
𝜌𝜅𝜆

= − ln(0.10)
𝜌𝜅𝜆

= 2.303
𝜌𝜅𝜆

We may add a column to the table for the value of 𝐿. We also convert 𝐿 from cm to m for
convenience (dividing 𝐿 by 100):

𝜆 (µm) 𝜌𝜅𝜆 (cm−1) 𝐿 (m) Color

0.3 0.0067 3.44
0.4 0.00058 39.71 violet
0.5 0.00025 92.1 green
0.6 0.0023 10.01 orange
0.8 0.0196 1.18
1.0 0.363 0.063
2.0 69.1 0.0003

2.6–10.0 > 100. < 0.0002

Colors in the green to violet range are transmitted the farthest. Reds and yellows are quickly
absorbed. So, underwater one would see mainly bluish-green light.

Infrared wavelengths (see Table 1.2) are absorbed in a few mm or less of water. As such, water’s
infrared absorptance will be close to one if the water has any significant depth. From Kirchhoff’s
law (Section 10.2), the infrared emittance on those wavelengths will also be close to one.
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Problem 10.49 The sun has a diameter of 1.3914 × 106 km. The earth has a mean diameter
of 12,742 km and lies at a mean distance of 1.496 × 108 km from the center of the sun. (a) If
the earth is treated as a flat disk normal to the radius from sun to earth, determine the view factor
𝐹sun–earth. (b) Use this view factor and the measured solar irradiation of 1361 ± 0.5W/m2 to show
that the effective black body temperature of the sun is 5772 K.

The physical data in this problem were updated in v5.20. Sources in Comment 4 below.

Solution
a) The sun has a spherical field of view of which earth is a tiny part. We can treat earth as a

circular disk of diameter 𝐷𝑒 = 12, 742 km sitting on the spherical surface, 𝑆, at a radius of
𝑅 = 1.496 × 108 km. The entire area of 𝑆 is 4𝜋𝑅2, and the fraction of that area occupied by
the earth is the view factor:

𝐹sun–earth =
𝜋𝐷2

𝑒 /4
4𝜋𝑅2 = (12, 742)2

16(1.496 × 108)2
= 4.534 × 10−10

Answer
⟵−−−−−−−

b) Satellite data show that the solar irradiation normal to the sun-earth axis is 𝑞irrad = 1361W/m2

above the atmosphere. If we treat the sun as a spherical black body of diameter 𝐷𝑠, the heat
transfer from the sun to the disk of earth’s diameter, is

𝑄sun to earth = (𝜋𝐷2
𝑠 )𝐹sun–earth𝜎𝑇4

sun = 𝑞irrad(𝜋𝐷2
𝑒 /4)

(This heat transfer does not consider the [tiny] radiation from the earth to the sun.) Solving
for 𝑇sun,

𝑇sun = [
𝑞irrad(𝜋𝐷2

𝑒 /4)
𝜋𝐷2

𝑠𝜎𝐹sun–earth
]
1/4

= [ (1367)(12, 742)2(1000)2

4(1.3914 × 106)2(1000)2(5.670376 × 10−8)(4.534 × 10−10)]
1/4

= 5772 K
Answer

⟵−−−−−−−

Comment 1: Avoid the temptation to treat the sun and earth as two disks facing each other
(Table 10.3, item 3)! That approach understates the area viewed by the sun by a factor of two.
That calculation must also be done to very high precision, or by a binomial expansion, to obtain an
accurate, nonzero result from the equation in Table 10.3.

Comment 2: Part b) can be done without the view factor and earth’s radius by a simple energy
balance between the heat leaving the sun’s surface and the heat reaching the sphere of radius 𝑅:

(𝜋𝐷2
𝑠 )𝜎𝑇4

sun = 𝑞irrad(4𝜋𝑅2)

𝑇sun = [
𝑞irrad(4𝜋𝑅2)

𝜋𝐷2
𝑠𝜎

]
1/4

= [ (1361)(4)(1.496 × 108)2

(1.3914 × 106)2(5.670376 × 10−8)]
1/4

= 5772 K

Comment 3: The total solar irradiance varies with seasons by ±3.5%, as the distance between
earth and sun changes, and rises during the 11 year sun spot cycle (amounting to about 0.1%). A
mean annual value of 1367W/m2Kwas in use ca. 1982. As satellite instrumentation has improved,
the value has been adjusted. Recent data are lower, 1361 ± 0.5 W/m2K, and are referenced to a
“quiet sun” condition, with minimal sun spot activity. At the time of this writing, NASA had an
ongoing mission to measure solar irradiance: https://lasp.colorado.edu/home/tsis/data/tsi-data/.
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Comment 4: The International Astronomical Union provides the solar data used here: Prša
et al., “Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3,”
Astronomical Journal 152:41, 2016, doi:10.3847/0004-6256/152/2/41. Mean earth radius is due
to the International Union of Geodesy and Geophysics (Geodetic Reference System, 1980).
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Problem 10.50 A long, section of cylindrical shell has a radius 𝑅, but it does not form a
complete circle. Instead, the cylindrical shell forms an arc spanning an angle 𝜃 less than 180°.
Because the shell is curved, the inside surface of the shell (call this surface 1) views itself. Derive
an expression for the view factor 𝐹1-1, and evaluate 𝐹1-1 for 𝜃 = 30°.

Solution

𝑅 𝑅

𝐴1

𝜃

𝐴2

Let surface 2 be a flat surface that lies across the open portion of the arc (see figure). Then
𝐹2-2 = 0, so that 𝐹2-1 = 1. Reciprocity gives

𝐴1𝐹1-2 = 𝐴2𝐹2-1 = 𝐴2 so that 𝐹1-2 =
𝐴2
𝐴1

Then
𝐹1-1 = 1 − 𝐹1-2 = 1 − 𝐴2

𝐴1
From geometry, the area of the curved surface 1 is 𝐴1 = 𝜃𝑅 per unit length. The area per unit
length of the flat surface 2 is found by trigonometry, as 𝐴2 = 2𝑅 sin(𝜃/2). Hence:

𝐹1-1 = 1 − 2𝑅 sin(𝜃/2)
𝜃𝑅

= 1 − sin(𝜃/2)
(𝜃/2)

Answer
⟵−−−−−−−

For 𝜃 = 30° = 30(2𝜋/360) rad = 0.5236 rad,

𝐹1-1 = 1 − sin(0.5236/2)
(0.5236/2)

= 1 − 0.9886 = 0.0114
Answer

⟵−−−−−−−

Comment: Note that 𝐴2 → 𝐴1 as 𝜃 → 0 so
that 𝐹1-1 → 0 as 𝜃 → 0. The case drawn has
𝜃 = 100° and 𝐹1-1 = 0.1222. Each point on 𝐴1
sees other points on 𝐴1, but only at large angles
relative to the normal direction (see Fig. 10.4).
The situation for 𝜃 = 30° is sketched at right.

𝐴1

30°

𝐴2
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Problem 10.51 Solve Problem 1.46, finding the Stefan-Boltzmann constant in terms of other
fundamental physical constants.

Problem 1.46 Integration of Planck’s law, eqn. (1.30) over all wavelengths leads to the
Stefan-Boltzmann law, eqn. (1.28). Perform this integration and determine the Stefan-Boltzmann
constant in terms of other fundamental physical constants. Hint: The integral can be written in
terms of Riemann’s zeta function, 𝜁(𝑠), by using this beautiful relationship between the zeta and
gamma functions

𝜁(𝑠) Γ(𝑠) = ∫
∞

0

𝑡𝑠−1
𝑒𝑡 − 1 𝑑𝑡

for 𝑠 > 1. When 𝑠 a positive integer, Γ(𝑠) = (𝑠 − 1)! is just a factorial. Further, several values of
𝜁(𝑠) are known in terms of powers of 𝜋 and can be looked up.

Solution

𝑒𝑏(𝑇) = ∫
∞

0
𝑒𝜆,𝑏 𝑑𝜆

= ∫
∞

0

2𝜋ℎ𝑐2𝑜
𝜆5 [exp(ℎ𝑐𝑜/𝑘𝐵𝑇𝜆) − 1]

𝑑𝜆

= ∫
∞

0

2𝜋ℎ𝜈3

𝑐2𝑜 [exp(ℎ𝜈/𝑘𝐵𝑇) − 1]
𝑑𝜈

=
2𝜋𝑘4𝐵𝑇4

ℎ3𝑐2𝑜
∫
∞

0

𝑥3
𝑒𝑥 − 1 𝑑𝑥

We are given

𝜁(𝑠) Γ(𝑠) = ∫
∞

0

𝑡𝑠−1
𝑒𝑡 − 1 𝑑𝑡

For our case, 𝑠 = 4 and Γ(4) = 3! = 6. Hence:

𝑒𝑏(𝑇) =
2𝜋𝑘4𝐵𝑇4

ℎ3𝑐2𝑜
𝜁(4) 3!

=
12𝜋𝑘4𝐵
ℎ3𝑐2𝑜

𝜁(4) 𝑇4

Zeta is a famous function, and the value at 4 has been established to be:

𝜁(4) = 𝜋4
90

Hence:

𝑒𝑏(𝑇) = (
2𝜋5𝑘4𝐵
15ℎ3𝑐2𝑜

) 𝑇4

= 𝜎𝑇4

which gives us the Stefan-Boltzmann constant in terms of fundamental physical constants:

𝜎 =
2𝜋5𝑘4𝐵
15ℎ3𝑐2𝑜

Answer
⟵−−−−−−−
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Problem 10.52: The fraction of blackbody radiation between wavelengths of 0 and
𝜆 is

𝑓 = 1
𝜎𝑇4 ∫

𝜆

0
𝑒𝜆,𝑏 𝑑𝜆 (11)

a) Work Problem 10.51.
b) Show that

𝑓(𝜆𝑇) = 15
𝜋4 ∫

∞

𝑐2/𝜆𝑇

𝑡3

𝑒𝑡 − 1 𝑑𝑡 (12)

where 𝑐2 is the second radiation constant, ℎ𝑐/𝑘𝐵, equal to 1438.8 µm⋅K.
c) Use the software of your choice to plot 𝑓(𝜆𝑇) and check that your results match

Table 10.7.

Solution. Following the solution to Problem 10.51:

𝑓 = 1
𝜎𝑇4 ∫

𝜆

0
𝑒𝜆,𝑏 𝑑𝜆 (13)

= 1
𝜎𝑇4 ∫

𝜆

0

2𝜋ℎ𝑐2
𝑜

𝜆5 [exp(ℎ𝑐𝑜/𝑘𝐵𝑇𝜆) − 1] 𝑑𝜆 (14)

= 1
𝜎𝑇4 ∫

∞

𝑐𝑜/𝜆

2𝜋ℎ𝜈3

𝑐2
𝑜 [exp(ℎ𝜈/𝑘𝐵𝑇)− 1]

𝑑𝜈 (15)

= 1
𝜎𝑇4

2𝜋𝑘4
𝐵𝑇4

ℎ3𝑐2
𝑜

∫
∞

𝑐2/𝜆𝑇

𝑡3

𝑒𝑡 − 1 𝑑𝑡 (16)

= 15
𝜋4 ∫

∞

𝑐2/𝜆𝑇

𝑥3

𝑒𝑥 − 1 𝑑𝑥 (17)

= 15
𝜋4 ∫

∞

0

𝑥3

𝑒𝑥 − 1 𝑑𝑥− 15
𝜋4 ∫

𝑐2/𝜆𝑇

0

𝑥3

𝑒𝑥 − 1 𝑑𝑥 (18)

= 1− 15
𝜋4 ∫

𝑐2/𝜆𝑇

0

𝑥3

𝑒𝑥 − 1 𝑑𝑥 (19)

The numerical integration can be done in various ways, depending on the software avail-
able. (On a sophisticated level, the last integral can be written in terms of the Debye
function which is available in the Gnu Scientific Library.) This equation is plotted in
Fig. 1.

Problem 10.53: Read Problem 10.52. Then find the central range of wavelengths that
includes 80% of the energy emitted by blackbodies at room temperature (300 K) and at
the solar temperature (5772 K).

Solution. From Table 10.7, 𝑓 = 0.10 at 𝜆𝑇 = 2195 µm⋅K and 𝑓 = 0.90 at 𝜆𝑇 = 9376
µm⋅K. Dividing by the absolute temperatures gives:

𝑇 [K] 𝜆0.1 [µm] 𝜆0.9 [µm]

300 7.317 31.25
5772 0.380 1.62
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Figure 1. The radiation fractional function

Problem 10.54: Read Problem 10.52. A crystalline silicon solar cell can convert pho-
tons to conducting electrons if the photons have a wavelength less than 𝜆band = 1.11
µm, the bandgap wavelength. Longer wavelengths do not produce an electric current,
but simply get absorbed and heat the silicon. For a solar cell at 320 K, make a rough
estimate of the fraction of solar radiation on wavelengths below the bandgap? Why is
this important?

Solution. The relevant temperature is that of the sun, 5772 K, not that of the solar
cell. We approximate the sun as a blackbody at 5777 K, ignoring atmospheric absorption
bands.

𝜆band𝑇 = (1.11)(5772) µm ⋅ K = 6407 µm ⋅ K
Referring to Table 10.7, a bit less than 80% of solar energy is on these shorter wavelengths
(with a more exact table, 77%). This is significant because the solar cell can convert less
than 80% of the solar energy to electricity; additional considerations lower the theoretical
efficiency still further, to less than 50%.
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Problem 10.55 Two stainless steel blocks have surface roughness of about 10 µm and Y ≈ 0.5.
They are brought into contact, and their interface is near 300 K. Ignore the points of direct contact
and make a rough estimate of the conductance across the air-filled gaps, approximating them as two
flat plates. How important is thermal radiation? Compare your result with Table 2.1 and comment
on the relative importance of the direct contact that we ignored.

Solution The gaps are very thin, so little circulation will occur in the air. Heat transfer
through the air will be by conduction. Radiation and conduction act in parallel across the gap.
The temperature difference across the gap will likely be small, so we may use a radiation thermal
resistance. The conductance is the reciprocal of the thermal resistance, per unit area, so ℎgap =

ℎcond + ℎrad.
Letting the gap width be X = 10 µm and taking :air = 0.0264 W/m·K, we can estimate

ℎcond ≈ :

X
=

0.0264
10 × 10−6 = 2, 640 W/m2K

With eqns. (2.29) and (10.25):

F1–2 =

(
1
Y1

+ 1
Y2

− 1
) −1

=

(
2

0.5
− 1

) −1
=

1
3

ℎrad = 4f)3
<F1–2 = 4(5.67 × 10−8) (300)3(0.3333) = 2.041 W/m2K

Then
ℎgap = ℎcond + ℎrad = 2640 + 2.041 = 2, 642 W/m2K

This conductance is on the lower end of the range of given in Table 2.1. Conduction through con-
tacting points will add significantly to the heat transfer, although it will be highly multidimensional
and not easily calculated. Thermal radiation, however, is negligible.
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Problem 10.56 A 0.8 m long cylindrical combustion chamber is 0.2 m in diameter. The
hot gases within it are at a temperature of 1200°C and a pressure of 1 atm, and the absorbing
components consist of 12% by volume of CO2 and 18% H2O. Determine how much cooling
is needed to hold the walls at 730°C if they are black. Hints: For this small optical depth, the
emissivities of CO2 and H2O may be added without correction. The gas mixture is approximately
ideal, with vol% of 𝑎 = mole fraction, 𝑥𝑎 = 𝑝𝑎/𝑝.

Solution The geometrical mean beam length, 𝐿0, for this cylindrical enclosure may be
calculated from eqn. (10.58):

𝐿0 =
4 (volume of gas)

boundary area that is irradiated = (4)(0.8)𝜋(0.2/2)2

𝜋(0.2)(0.8) + 2𝜋(0.2/2)2
= 0.178 m = 17.8 cm

(10.58)
(If we had neglected end effects, from Table 10.4, 𝐿0 = 𝐷 = 20 cm.)

According to the hint, with a total pressure of 1 atm, the partial pressure of CO2 is 0.12 atm and
the partial pressure of H2O is 0.18 atm.

We can start by finding the gas emissivities. We need the temperatures in kelvin: 𝑇𝑔 = 1200 +
273 = 1473 K and 𝑇𝑤 = 730 + 273 = 1003 K. For CO2,

𝑝𝑎𝐿 = (0.12 atm)(1.013 bar/atm)(17.8 cm) = 2.16 bar-cm

At 1473 K, Fig. 10.22 gives 𝜀0 = 0.052. Figure 10.24 gives the pressure correction factor as
𝐶 = 0.995 with 𝑃𝐸 = 1.03 bar, so that

𝜀CO2 = 𝐶𝜀0 ≅ 0.052

For H2O,
𝑝𝑎𝐿 = (0.18)(1.013)(17.8) = 3.25 bar-cm

At 1003 K, Fig. 10.23 gives 𝜀0 = 0.070. Figure 10.25 gives 𝐶 ≅ 1.15 with 𝑃𝐸 = 1.90 bar, so that

𝜀H2O = 𝐶𝜀0 ≅ 0.081

As suggested in the hints, we add the two emissivities to obtain 𝜀𝑔 = 0.133.
The absorptivity is computed using eqn. (10.57). This calculation requires us to find 𝜀𝑔 using

different temperatures and partial pressures. We add the emissivities for the two gases, then compute
the absorptivity of the mixture.

𝛼𝑔 = 𝜀𝑔(𝑝𝑎𝐿
𝑇𝑤
𝑇𝑔
, 𝑝, 𝑇𝑤) × (

𝑇𝑔
𝑇𝑤

)
1/2

(10.57)

The adjusted pressure-paths are:

𝑝𝑎𝐿
𝑇𝑤
𝑇𝑔

= {
2.16(1003)/(1473) = 1.47 bar-cm for CO2

3.25(1003)/(1473) = 2.21 bar-cm for H2O

The emissivities from Figs. 10.22–10.24 are:

𝜀(1.47 bar-cm, 1 atm, 1003 K) = 𝐶𝜀0 = (0.99)(0.062) = 0.061 for CO2

𝜀(2.21 bar-cm, 1 atm, 1003 K) = 𝐶𝜀0 = (1.15)(0.056) = 0.064 for H2O
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wherein 𝑃𝐸 takes the same values as before. Adding these and using eqn. (10.57) we have

𝛼𝑔 = 𝜀𝑔(
𝑇𝑔
𝑇𝑤

)
1/2

= (0.061 + 0.064)⏟⎵⎵⎵⏟⎵⎵⎵⏟
=0.125

√
1473
1003 = 0.151

Finally, we are ready to compute the heat transfer from the gas to the wall, which is the cooling
load:

𝑄netg-w = 𝐴𝑤(𝜀𝑔𝜎𝑇4
𝑔 − 𝛼𝑔𝜎𝑇4

𝑤)

= [𝜋(0.2)(0.8) + 2𝜋(0.2/2)2](5.67034 × 10−8)[(0.133)(1473)4 − (0.151)(1003)4]

= 15 kW
Answer

⟵−−−−−−−
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