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4.1) Make a table listing the general solutions of all steady, uni-dimensional,
constant properties, heathUﬁaﬁttlon problems in Cartesian, cylindrical,

and spherical coordinates, with and without uniform heat generation. (This
table should prove a very useful tool in future problem work. It should
include 18 solutions, all told.)

Geometry Solution w/o heat generation Solution with heat generation
2
x-dir. | T=Cx+C, T=Cx+C, -%.k_ X
I
] . _ _ a 2
'5 y-dir. T = Cly + C2 T = Cly + C2 " 3% y
« ~di = = - ==
S [z-dir. T Clz + C2 T Clz + G, T z
-di = - .48 2
E r-dir. T Cllnr + C2 T Cllnr + CZ Ak T
A ; T=0C0+C T=coxc, - & o
"‘U: 9-dir. = 1 "‘2 = 1 2 Ek—
Ei (where r is,some_constant value)
& |z-dir. | T=Cpz +C, T=Cpz +C, ‘%}? z
C [ ,
, _ 2 _ 24 2
~ r-dir. T = Cl + = T = C1 + T ok T
a 0 0 o
.§ 8-dir. T = Clln tan §-+ C2 T = Clln tan 5+ C2 + —E—-}n sin @
g, ) _ - _g__z.z)z
@ [¢-dir. | T=cC+cC, T=C0+c - (% rsin“e) ¢
where in the last two
equations r, and r§6O,
respectively, must be
constants

Some of these solutions will have limited practical value. For example,
the 0-dir. solutions will be applicable only to thin cylindrical and spherical
shells whose radius is virtually constant. This must also be the case for
the ¢-dir. solution in spherical configurations, but it is also restricted to
a narrow longitudinal swath.

4.2 Develop a dimensionless equation for

the temperature in the wall shown: i =
General solution: T=0° Y, (o)
=0 AG-T )55
d2T a CN ®’m3
I = = = (T - Tw)
dx< k T
S0 hgus
T = 7w = CycosdAAx + Cosinddlk x ~—
o) L X
b.c's: wLus: -To=¢,
T 3
. A« _~ — A i, . Pesls
Rus: —ka‘ _LMS(T-\.,\ o 'l;smEL-chosEL— —C-,—(Tbasét.

|
ey
S.LQ W, *Cq_SmF.::L)
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41 (me"mueé 3

CZ( BLQS.“E Lt Cosr% LB = Bi-&Ta, CO’FE L - T.,nSI“{:t: L

C _ __ \,CDSFL $m L
=
L"‘ldJ“z‘L + CQS’J-E

[L\US: =T B.,Cos A o Sin A L
___.“‘ = cos\J_A_x - .J 3 SinqyBx —
T B snlEL 1t corfE %
. e le " y_ C‘“'\*L_

Checke the limd 4 A=>o0:

log™ te P: e -
= | ~ —— 12 x = \- x ~ |\ - — E‘ ok
- w
Teo B.F_ L+ k,“k,L 41 g

4.3) A long wide plate of known size, material, and thickness, L, is connected

across the terminals of a power supply and serves as a resistance heater.
The voltage,current,and T are known. The plate is insulated on the
bottom and transfers heat out the top by convection. The temperature,

T e’ of the bottom is measured with a thermocouple. Obtain expressions

for a) temperature distribution in the plate, b) h, at the top, c) tempera-
ture at the top. (Note that your answers must depend on known information,

only.)

. EI
4=1py = Bk
2
So: _d_';‘ + B=20
dx

general solution:

2 2
- X BL %
T= o)+ ¢, - (%)

b.c.'s: T(x=0) = th, the thermocouple reading
S—T = 0 , since insulated.
X
X=0

(The b.c.'s are interesting in that both are at x=o. We might have

replaced the second one with: kﬂ _EL
dx | __ by
x=§
apply the b.c.'s:{ th =0 + C - 0; (,= T&c
0=¢ -0 3 € =0
4
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43 (conkiaved )

Therefore: a.) T-T 2
—te . (z)
BL%/2 L
b.) h = 'kng/dX)¥ =L _ 51/1:1 —
x=L = = top T w
2
= -1y = _ BL
€ Teop = Tl = T - 5
4.4, 4.5, 4.6 Virite the dimensionless functional equation for each

of the following situations.

4.4

pu L
[=2)
fn ( I ’

dimensions -+ 7-4 or 3 pi-groups.

Heat transfer to a fluid flowing over a plate of length, L.

0, cp, k, L)
kg J 18]
m3 kag-°C m-°C m

¥e choose:

uc

- ) see egn. (6.58) and others

that follow it.

iy
-

4.5 Vapor condensing from a pipe.

A= X([pf-og], a,
3
m kg/m N/m
) g(of-o‘)
o

= fn (nothing else)

(Call the wavelenath, 1.)

9)

m/sz; 4 var in 3 dim » 1 pi-group.

— —t

constant

-

4.6 Velocity in a condensate

u m/s

see equation (9.6b)

film

uly m, g9 m/s%, v m2/s, § m

9 variables in 2 dimensions + 3 pi—-groups

so
u
v
—_—= fn(g, )
dgs gs3

i

We find this situation described by eqn. (8.51) which takes this
form when the vapor density is negligible.
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4.7 Find the dimensionless temperature
distribution in the cylindrical shell
shown and plot it for r;/r, = 2/3.
Establish criteria for neg?ect1ng
convection and internal resistance.

Qemend soluhon: T-: C|2‘.r+c.‘-3'_p7—

4k
T-To:
l(’ B= - oL % )%.'-‘r— +his laec,m¢,s & = C,, LF +C4‘
1% / e 4 7
len L.(_.IS . o T =0 6—\—@ =
ar}ua o A/) p=i
wdi WTe)l S hiee N, dB) oo
or or. k i ) ¢ 20.
=f. . / /qu /ﬁ/p‘

3 J

impese e Lest Voo o %.Jp,:l st O=C,-2 (=2

4
lm?oJC» 2" b.c, .

/,7 -/L- =& (C, L/DL. +c.,—/9§) , bt (2

2 o Bl p)aaped
Qc-\urn ‘gujﬁ\'\e YAJ] So\d‘tw w"H« 'Haese. Gw:**a-.-k‘.

@~2,°~J+- ‘_"/i_ —a,L\) +) ../)7-
/ /

or

8= prpatg  F (-

NoYice Hht &.y 3L \arap. s u?froaches e - j’ l)nﬁ*%'

ad 10 o swmadd " (—-/f’—-)
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4.1 (Can'\'\nue‘\\
'(w ﬂ-— 2/3 the eq,auhm reduces 1o

5

© - 'j”"bﬁ‘l‘\‘\)ﬂ-l%l.&y Lot

T E{‘«‘O.Zb/
1.6661
bid © - =7 N
2/3 o VA
6= o1 | ocesz0 %
0.8 | 0.169] §
o'? 0.23%47 7
.o 0. 2554
5‘ e
, b 66T
EE__N_JQL_
ol | 16.67
0.25 6.6
4 0.9 3.33
- ;;‘. \ L6061
1 ,4\0 é 0. %333 B\-‘o.g |
"°* 10 0. 6L
"l w0 |o.0k
@ = I"
Bi=lo—
l .
Bi=160
Io) [ [} 1
o) 0.2 0.4 0.6
p= v/,

When Bi = 0.25, the temperature distribution within the
tube wall is within 4 percent of uniform (0.8 percent at
Bi = 0.1, etc.)

When Bi = 100, the temperature drop through h; is &

percent of that inside the tube wall (3 percent at
Bi = 200, etc.)
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4.8 Steam condenses in a small pipe keeping the inside at a
temperature, T;. The pipe releases qQ W/m*® within its
walls as a result of electric current flowing “through it.
The outside temperature is T, and there is a heat transfer
coefficient h on the outside. a) Evaluate the dimension-
less temperature distribution in the pipe. b) Flot the
result for an inside radius that is 2/3 of the outside
radius. - ¢) Discuss interesting aspects of the result.

- r=r; i) T:-T((‘)
(Y
XTI @ 2) L2 (r )—-1
% ret, 3) T"E}:"‘* Colr 1Co
43 TKT:() :T'
T
CT—\w) - ‘ 5; f=Y,
5) szT'*%lrc =C. hve
.k (an _a
Combme: é—-’(v‘f“\(:)-i- C .ﬂmﬂ/f' +(T.-T )—_ =S
A" ' LosL e B3

= AT

. C. = 4km-[\3L 7)'”1"1 AT
5+ s
35w

\\.

- (%) i
6) ~—T ‘\% L) Lr.+_ 'QM ‘l\ B‘r:" \L‘r'——:‘.

t

-t P» /P
R A ) e
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48 (cembhnued )

7}15 lan ;C f(’w/?;k*\ as _ E[ 1 Zg-\ +‘_f°&o b Q“f/f"
@ = 1 4 /D f-.' + ]m)ol _ )g\MPJ— ‘gl_‘_‘o‘ll‘.

3p¢
S R R TSR RTSL Sk

M=40

OOS

o 1 l 1 o
53 08 1.0 ;5 0.3 1.0

Jo = r/"a S /s

We see that inter‘nq\l heat generation becomes important for
r> O«y. For F ¥ 2, that the temperature maximizes
within the shell.
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4.9 Solve Problem 2.3, putting it in dimensionless form first.
With reference to the Problem 2.5 solution, we repeat the
steps as follows.

T -1

5\1«3) \—‘-‘-C.Qnsfﬁ—c,_ becmcs QEALF E@‘-C, DA/ t C-4 )f&rr—_

$¥cr*) é@ - Bge
af)/p—-\ ‘ f“
B| - g (1
b, 80 9.
Steps) c,=®il, ¢ S2=5 ¢y hp, Ca)/pe
° = C,y(8:,
or‘c‘ Ca 'E. C:l/(-‘—--»\—-\-l»-)
4 = Bi, : 3 81., B"i. /D.
s g Lep v VR

a0 Sowe result ag 1 Pr.b. 2.5
wikh a Vot less alscbn

buelec <k

U)\iﬁv\ we 0\‘0\.—\ BLL MA gio = 0o P 9 = L\"/ro :&24

4.10 Complete the algebra leading to equation (4.41).

)

U C t wl§ -ml
we have 4-‘%—:—'—'}- ";%(T‘T:b o j—?_». = (mL)'® , o @=0C,e "‘CzC" §
subyct Yo (T =) o~ @021, s | =C,4C
amd P 2‘_(35!—3] =0 o A—@] =6 , s O-=c¢et-ce™t

ax PEIR dﬁ §=1
e o . _ e-L _ \ en\-
“ow Pu\' C“- 1-G (’l’on\ \ b.L.llu 2%b.c. ﬁ, ac": C: = P = T GsnL
Thom:  gemtloglal = e 0, o2 ) R, A )
© = Z Cosh wmL - 2 cosh wm L

@ - 6051\ h\\(\'ﬁ\ —

Cosh mL

NTo

10
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Problem 4.11 Derive eqn. (4.48)

Solution

We already have the dimensionless form of the general solution
of egn. (4.30) in eqn. (4.35)

. omLg -mLE
@ =cye + Cye

‘and the dimensionless form of the b.c.s. (egn. 4.31la) given in
ean. (4.46).

We put the solution in the two b.c.'s and get:

Ot=0) =1 D> 1= cj¥c, or ¢ = 1-c,

av - _Ri - mL ., _ -mL - _n4 mL -mL

T oy Bi,, @t=1) 3 nre™c -mLe c, = -Bi_, (C;e™+c,e™™)
mL | Bl.x oML

We put C; = 1-C, in this, e mL

rearrange it, and get: c2 =

Bi
ax _.
2(cosh mL + = suﬂnmL)

Put this c, in ®@= (1-C2)mLE + Cze—mL‘E and get:

Bi Bi Bi
mLg ax . mL ax _mL, mLg mL ax, -mL¢
2 + - —_ax —ax
<)= e (cosh mL =F sinh mL) - (e “+ T @ e “+(e T+ ——)e
Bi

ax ..
2 (cosh mL L sinh mL)

jgu41?23+e-mL(l—E)+ B;ix\$eTP(1+g))tsg;4¢¢fj_‘Biix\eff(1+g)
)

b}
S

ML (1-8) Blay oML (1-£)
QO‘\“‘M ye d) '\‘ ml.

2(cosh mL +

B1i
ax
mL

sinh mL)

Bi
L mL(1-g), mL(1-g) 1l ""ax  mL(l-g) _-mL(1l-%)
@= 1[8 +e 1+ E _T.I\T (e -e ]

Bi
cosh mL + 28X sinh mL
mL

or, finally:

Bi
cosh mL(1-¢) + mix sinh mL(1-¢)

@ ) “lax —
cosh m, + T sinh mL(1-¢g)

11
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4,12 Obtain the infinite fin result: @9 = oMLt by starting with
the general fin solution: C>= ClemL€+ Cze-mLE and using the
b.c.'s T(x=0) = T_or @(¢=0) = 1 and T(x=L) = T_ or

@§(E=L) = 0. Discuss fully.

From the first b.c. we get Cl = l-C2 as before. From the

second b.c. we obtain: 0 = clemL + Cze_mL
or 0=e™ —Cz(emL-e-mL)
(s 2 sinh mL
mL
or C, = EETEE'EE

Then the general solution becomes:

eng(emL_e-mL)_emL(l+e;)+emL(1-5)

_ _-mLf_. , MLE__-mLE, _
C>- e Cz(e € ) 2sinh mL

@- SOLAAET_ -mL(1-¢) _ mL (T, mi(1-¢)

2sinh mL

C) _ sinh mL(1-¢)

sinh mL
XX X
When x is large, sinhx = 5 :?'Tr . Therefore, when mL
is large
mL (1-¢) -
@79———1@—— = ¢ MLt which is ean. (4.50) -
e

It follows that these b.c.s are not enough, by themselves, to
get the infinite fin result. We must also require that the

fin be very long.

Copyright 2023, John H. Lienhard, IV and John H. Lienhard, VV 12



4.13 How long must ﬂ be to guarantee
an error less than than 0.5 per-
cent i1n the thermometer well

shown . —
30% = —r—)
Fid m( - . 1
mi= ﬁj—f , W dm.ssml ‘*»
A K Eo-dd) |

. -l
:\Foo(o.ou L= 174

17(0.0004- 0,00035 34)

Ag lcmg as Q>0.0|1Z.M , mQ will be .al-tr thau 3 and
we Cawm use e ke £ approx akiom

= 1 _ %zo0.005 ’ ml

COS\\*l ;) e e + € - 400

Tkns s True gw ml o= S992.,

Thare b $.992.= 174 L. so {=0.03404 u

This means that the well must only be 3:44 cm =

in length to guarantee the required accuracy.

4.14 What is the maximum
possible heat fluyx
from the fin shown.

To=20%

Q= VWM P (T,-T ) taah L = y/Soosea)feon) Laurod) (176-20)

Max value &r
lovg L. 18 4 = 34.5 W -

13
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A.5)

A thin rod is anchored at a wall at T=T, on one end, and is
insulated at the other end. Plot the dimensionless temperature
distribution in the rod as a function of dimensionless length:
a) if the rod is exposed to an environment at T_ through a heat
transfer coefficient, and b) if the rod is insulated but heat
is consumed in it at the uniform rate -4=RP(T,-To ) /A. Comment
on the implications of the comparison.

o) =
_ c - d? ‘tﬂ o A_@ zmU)'@ 1» case a)
Q:o. ‘ g ?
=\
X0 ?:\

=m0 in cose b)

coshmL(1-€¢)

Cas\u nl

case a) We a‘rﬂw\j kaou -H-\c Sa\u\'lo._ I‘_ ‘s @“z

Cusc L) Jd-%@z‘@"l-y = C°"i‘~* So we m-‘—esn.;-e Yuwice ond ?5‘
fue gpmend solubn: @2 N Rt

Ay V7 be Ol0)= Ca= 1
Apply 2™ bc é&i?‘% o Wiy +C= O , €, =-ba)
Theaboe B, = I (& -f) + )
1LO oo gip.
6.3
0.C - &
2 oa 0,
r‘— ("'o 0.2 ®a
: L
@ :2 i o2 . f ‘/cle 1.0
-0A} 6,

When & is close to unity, hF‘(T - T /A = hP(T — T, /A,
or (mL)‘-@ (mL)‘-, and the pr*ob]ems (and their sol utlons)
become identical. As @ becomes < 1 the solutions diverge.
the energy consumption in case b is unabated and @y is
generally < a-

Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V
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4.16 Consider the tube shown below. Fluid enters the tube on the
left at T = Tq. Assume its temperature to remain constant.
Evaluate and plot the temperature distribution in the tube.

4%11,)
dxt

-

& i (-7
kTl

ov & = (ML)L@
dﬁ"'

where @1.?_1%’ ) """‘Y—-—i—%f—
e-\e kd':(;%‘-‘)

L]

Le -
+C, ¢

Ge'l. saln.: B=Ce"
&OLL b‘C.Z @(geO):O: C“"C'_ so C|:"c1_

riaht b.o. w OE:=)= |=cz(é‘“§e"*) 5o €,= - t/2smhmL

e = Swhat§ 6v we »u2&¥\n*¥k Ae&nc éﬁ'aﬁiixt

Thevs ¢
Sinlh L TQ"Th

-
A

|

-
&

Notice that when m is small, the influence of convection is
also small and the temperature distribution is almost 1inear
as it would be in pure conduction. In the other extreme -—-
the convection dominated or large m case —-— the temperature
distribution remains near Tq, except as it approaches the
right-hand wall.

Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V 15



4.17 Plot the temperature distribution
in the fin shown and evaluate ",

Zan. (4571) becomes:

dfl d{ T: T Te

r—

(2 EQ

24 4O  RPLE

B BT Sr il
\emgrered
z(mi)?

To salve Yus (Bulers d.e) we look %,m Soluhim of He {,M@=cf\>

S0

SR AL AT P S P 2Tt

This bhas +we soluhons : _ - = \
P a.d v, = t-‘/z‘b(nﬂ -3

So He cé&ne-rai soluhon s @ - C ?P, . %PL
- \ 2

e u uwQ b. .‘ ve
awd -\4\ S c. s 3\ @[Q:\): l=C|+Cz

P
Ol = 02,87+ a5 ], o
No-\-lce Hiok Pz mush be ncaa‘hve So Cl must be zere \'a sa’ns% 311.5_

Th'v‘(‘ln& C"L:O w C‘:i ) M: \
1y T . =
2 ¥(mL) Z -
o= ¢

7Ze e;Ztréty 18 !

L -
y - go W(T-T,,) b dx
¢ W (T, -Two)b

1
\ i%*(‘-‘-l "i- \ J%*(M)i -12-_
ﬁo% 4§ * Foorag | )

So . 2’

= s:@(s)aq

-

N

% N Il+4(m)’~ +1

<

(CDW'\’,A .3
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Before we plot these’ results, we note that mbL

in this case
is the same as mL(L/P)Y1/2 in Fig. 4.13.

1.0

®

0.S

0
1.0
7
0.5 —
0 A I Iy ' 1 I 1 l A
o 2. a-

6 =} 100

4.18 Problem 4.189 was solved under a full

the solution given for 2

nondimensionalization
2.21.

We do not repeat it here.

in

4.19 A fin connects two walls
as shown. How much heat

- Y‘ = r]-:;’uc *
1s removed from its surface? >

K= 390 W/m-°C

fe——0.3m

t X
00125 m
(rziec) A
mx - —m K T=200¢C T=93°%
®=Ccec +cC,c
g@ M;-Tool besi §=lECirte ;GG
-wll
@,. = C'ewﬂ+ CLew
[y wd
- e wd ~m -0, - e -®.
Them: @c‘(‘ Gle +Ce 5 C,= 2 sk mi C‘- \= 2sinh ml
wi el
so: ) é—c—@\. wx ¢ ~@®n ol
- 25wk ml 2 siah "‘\1 i

Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V 17



4.19 (continued)

I Y- e 1o, L
Q U\AY[IK !=o~ % ] - kw AAT[G— zu\-l)(“eh )
Xz
wi
e _®' ~ma
—— (V- €.
s T \1(9) 15~ 2228 :
390 T (00625) (200 -38) o [l-ﬁ )(‘- e“‘)fomsz(\-"'“]
—_— ‘ - & \ —
=3.13 %

0.955) -2.068  0.6WS

= 12.13 W =

4.20 How much error does the insulated tip assumption giverise
to in example 4.87

Calculate Rercor = Rins, = Countes. u sing e,ns./4.44)

MJ (4-48) : . Qu-m't.
4o hal (14 ‘-:% Yalsl) - g;‘,-ti-‘&'a.kuL ,
1——5—?:‘ * +ah nL

(-1~

2 error =

I G S R I

E"“T‘ » Yaukh wL

L

o

- ; - Bltog - 0.0446>
From Lxample 48wl = 0.9656, — = Zetse

= 0.064) , Se

the error = 3.6 7 —=
Tw =35°C 3
4.21 Compute the heat removed =
from the fin shown, con- 300 —/ "‘3‘5’“”‘:\“‘?5 do.c06m
root depression. Assume h =13 \ ¥
the tip to be insulated. Xz X20.06m

130 (%) (0.006)
153 (m)(.oot

Q= Jui? (87) Youk mi. /153 (oot F ooty 136 (265)(0.8913) = 24.38W

ml =

(o.08) = |.A28

The fin efficiency, n¢ = tanh(mL)/mL = 0.8913/1.428 = 0.624 = 62.4%
The fin effectiveness, e = n¢ (fin surface area)/fin cross-sectional area

e =0.624(2nrL/n 1?) = 1.248L/r = 25

18
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4.22 A 2 cm dia. horizontal 1.0% steel rod connects a block of ice with a block of
dry ice (CO-) in a 30°C room. The frozen blocks are insulated from the room. The
rod i1s embedded in each block with a 20 cm span between the blocks. The heat
transfer coefficient between the rod and the room is 10 W/m*K. Will the ice begin
to melt when the rod is at steady state?

Solution We need to determine whether the temperature gradient in rod is positive
or negative where it enters the ice on the left. If it is positive, heat will flow into
the ice and it will begin to melt. Fortunately, we have already solved for the
temperature distribution in a “fin” with specified temperatures at two ends, in
Problem 4.19. We need only differentiate that expression for temperature, and
determine whether the slope is positive or negative.

300 =303K |
Tee L leto deylee (COL)
ar O°C = 4 =0 ll_.-——" ot ~78.5°C
213K s 194, (S K
4—20cm o] s
= |

- z F ZTr N 2
ml 1“‘“ bnt 4 o280 %
k A
= JZhLE . [200).2) _ .34
e 4.3 (o-01)
We obtain from the sclution of Preblem 4.19:
L
ML @ E:m_ @z. -mX
® ={1-% Tk .
2¢inh mb 2 sinh mbL

T-Tw _ =303 /- .
nhece @ ”'-Tm Zﬁg i Q '1-‘ @1—3.51:"_

b
7S
Th —_= = = = 0.836

- ax s m | mnk(t.afﬂ) "

The slope is thus positive & the ice will melt.
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4.23 C»o'mfuk he heat removed
La The ‘C’\v\ Sldowvf\ .
m—;\/g wheee A= F(o.0)(0.00)

=0.001mt

mlys =1,R_1_~L= [23000) , | o
% kA 520000 =%

Tl\\; Wwes Om 2£\C|C(encj )g'rw

Flj. ,lng ab: 74::0'4]5

Q-= (0 (A b (200- 40‘0 =0.41§ (2-{0.\‘« 0.0\"')6230)(1 Lo) = 3010 % —~—

4,24 The M'1l/ﬁ/ /&m/v’crérc 5/::!"4“#4»\ n a .8'/0/ c’/ lw/% Z} /57
%:—/%- = J{(E - G:)‘) where il}/k Cam be viewed as a constaed A,
wi h he unids o". M‘;eu}u«. The sides are kepl ab T, and e
slab s PerwuH-eJ v cool. Precict (r-r)/A a5 a Cunchime ot ﬁ' L.

The 7maximum 47/A¢d %’/l”d!o/lc oﬂ.f/h‘vAw s —7;—&’-‘-' 'é
S0 we V/roxmw/w H 7 n, fral Aesteihution v, fh 7_';_)_&': Sin /L)
8

2({T~-Vw Tw
The heat o Husim egu b coy be wortlem zs: 2 (T-a-): v IER)
7 Ax* A %
So -Hmfmerd solutr . [e’q_n.[tll)) becomes:
Y]
-L‘Alﬁ = (D SimAx + Ecosh«) e ol . Thew:
T
be at x=0: -"-:2-—"".:0--(04»&)5"‘)\‘b se ©=0
- '!
be akt x=k: 1—"{—-"'-—0=(D:--M.)e‘\t N = 0/
L. -LA‘T—."’:'.S‘L;(‘_’_L)-.z Dsmrki) so D=4
Tkus'.
T-To _ sinmrx/D) e‘“‘% -
A a
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4.25 A 1.9 m length of pipe is
finned as shown. Find the
rate at which steam at
10 atm, within the tube,
will be condensed.

First evaluate the heat removal
T‘z/fl = 3.5/2 = "15

:\}/6C0.0015)

. s
l50(0,0008¢p.oovs° eer
= 0.04712
-~ w
So from F-g, 4.\34a we recu:lj 94'-0.98 ki’-m"‘aom'z_oc'
amd -

Qf'?‘.. Q‘“‘(M”) L‘AP?!(O 50- ooe)A_r

—
—

1.2.4 (300) + &(M{o.0231.5) (0.39)(180.5-18)
448 \W

cond ~

The wmass vate aj Condensate 13 M - Q\P'If_

hey
At 10atwm, M\‘j = 2,03x10° J/kg 50
. 44 3/(s kg k
m = = 0.000223 -2 = 0.202 9.
cord  2.013410° T /¥y 3 -~
4,26 How long must the fin shown

be, if: | = 2awiec

T - Te O O0&wm dwawm cu ‘\n
_'77 = 0,2 7
° “Ix=L
Usimq eqn. (4.45): =
A 0.2~ 1/cesh v = 1/cosh % -

ov .

_ 2(28)
§ = cosh Js:s(o.ooz) W

solving ‘03 Hiad amd ecrov we oblam L= O.2734 <
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4.27 A 2 cm ice cube sits on a shelf of aluminum rods, 3 mm in
diam., in a refrigerator at 10°C. How rapidly, in mm/min,
does the ice cube melt through the wires if K between the
wires and the air is 10 W/m2-°C. (Be careful that you
understand the physical mechanism before you make the cal-
culation.) Check your result experimentally. (hf =
333,300 J/kg.) s

Solution. The rods act as infinite fins. Each carries
heat off in both directions at a rate given by egn. (4.42).

This is balanced by the rate of melt:

2/ (kA) (hP) (Tr-Tsat) = (2R) (2cm) £ Pice hfs

where { is the rate the rod advances. Thus

2/ 209 (0.0015)340(2)n(10-0) 6

£ = = 12.9 x10~
2(0.0015) (0.02) (917)333,300

w3

0.772 mm/min -

I did this in my refrigerator and found about 1 cm

advance after 15 min. This gave 0.667 mm/min which is a

reasonable comparison.

4.28 The highest heat flux that can be achieved in nucleate boiling
(called Qnax”"S€€ the qualitative discussion in Section 9.1)

depends upon: o_, the saturated vapor density; hfg' the latent heat of

g’
vaporization; o, the surface tension; a characteristic length, L; and
the gravity force per unit volume, g(of - og), where pg is the
saturated liquid density. Develop the dimensionless functional

equation for QUnax in terms of a dimensionless length.

G = PPy bey T lprpds D)
m*- s ™ kg st mEs™

There awve G variables 1 4 dimensims (TJ ™, \<3,5). This gwes 2
Tn I"OV‘DS . e 'Flvld them u-e L\r:l" elimindte T b the dimen-

Sl(nvi 'Fuv\z hmuuL eﬁ,ua'hw- . oAj term w,k.\_‘ :_\" neusd 90 cu"'

Ve
3::ifl— = La(pps :/bfg » T fjeff'r%)/ L)
j kS 2 2
Ky /mts ky/md  T/ky  glsT kylwmsT wm
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4,1% (COn\'mued)

MCK‘E} je\- rd ob __..Vde[.k
Lo
% max - (_“ _T/z R 0'1 3%), L-Jg(—___-))
5w o 7
s A o Tl s
Get rid 0‘£ ‘KS . — = delele
awut ( _ﬁ.,_l'_?‘___ — \>
hey 9lpi-p) Yj(/’;-ﬁ)’f“ " 3peps)
51

S leg /5%

Flna\)J we BQ“' V'lal j S MJ H\e ¥<rm3, ‘i 0\!'\'A|v\ %e rcsu.\‘L .

a’ma X - L ( \'\- 3 o
Ty ooy el )
\—-—-‘r. J ‘s——\,ﬁ-—-‘
This 1s called Hhe Kudateladze This 15 Yhe square
No. albler 5.8, Kubafeladze heud root of whal s
of The heat dramsfes lab. in Novo- Called a Bond Mo,

sibirsk , Siberia

4.29 You want to rig a handle for a door in the wall of a furnace. The
door is at 160°C. You consider bending a 16 in. length of 1/4 in.
mild steel rod into a U-shape, and welding the ends to the door.
Surrounding air at 24°C will cool the handle (h = 12 W/m-°C).
What is the coolest temperature of the handle? How close to the
door can you grasp it without being burned? How might you improve
the handle?

™S hadle ts hike ZJ Bin. (0.10'52.-'“) \on3 -Lns willy
lv\Su\a}ca\ '&195,

N
2 WPLY_ WmDLY | AGz2)e2e3d) _ . oo
(‘ML\) T kA | Kk wD¥a T 52 (0.00635) ‘

o > = O ey 4113 (160-24
@hf“cm\mL. Comnzas O 'S '*'f 24 +0,1113(160- 24)

= Coo\est-:'

47.3° -

L eF-24 Lo Cesh 2.450-¢)
buen~ Teaozd - © = Cosh 2.45
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4,23 (con¥inued)

or Cosh 2.45(1-¢) = V¢, 1.4?(\-3)'—‘-\.\65) i.: 0.5245

Therefore if you touch this handle within U.g¢45(8) or

ﬁag_lngngg of the door, you’ll be burned. ==

To improve the design you need a far smaller rod diameter
-- maybe a mere wire loop. Eetter still, weld on two short
steel studs and connect them with a (low conductivity) piece

of wood.

The proposed design is not a good one.

4.30 A 14 cm long, 1 cm by 1 cm square brass rod is supplied with

25 W at its base.
by air at 20°C with h =
expression for
mation.

We know Mot - T-Vp= C; QMLQ

The other end is insul ated.
68 W/m<-°C.
as a function of £ and other
Calculate the base temperature.

C, e..Lg (cf. eqn. (4.39)) with boe. s

It is cooled
Develop a dimensionless
known infor-

- A(—T-TO) - Q»“’GL- . d(T' Q) - o
sot Q | - -wm
—zmh ~inml Q " éZm\.
SO C:3 = CA— e =Ly + AT
o Qe el QoL
37 ) -t <" kAml
Akl \—e —;L
e
T2 swmhwl
- m ~-mL &
T"Tw__ ) e:ng e (.C/mLi + € ?)
Qyh JAmL™ 2sinhm L
_ CmLh-%)_ ‘z:mL('\-'»i) . e:—mL(\-‘i)-\../év,a\ffﬁ?)
- 2 sinh mbL
@_ T-Tw _._cosh mL(1-€)
} QbL/kA ml sinhm k
%QV\‘.
T;agg':T” ] =T+ Q, W
Qb\./\c'\ L tanhmt base @ K Aml Yanh ml
So
25 (0.\4)
- = 20 + (
baSC 8** .
‘03(0 o\) ; o414 “‘aw'h 22U6
109(0.01) .
2.2\6 ©.9763

= 20+ 148.10
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4.31 A cylindrical fin has a constant imposed heat flux of q, at one end

and q, at the other end, and it is cooled convectively along its
length. Develop the dimensionless temperature distribution in the

fin. Specialize this result for q, = 0 and L+e, and compare it with
equation (4.50).

The 2,0/"84‘&\ Solu“‘nun 1S "!‘-—T‘u = C‘e""‘ q* Cze“"“‘q wi“'l'.)
bes. ,

- -k d0-T.) ; -4k J(T-To)
a'u e ac ﬁ:o ] q‘z‘*f_d' i-—— f:\
or .

L -mbL
5 ik ce” - c,e™

o --—':G + C\ZS\n)‘ML

-mkb
c, = -E—':‘-((lm+a—'—z)/25,mhml.
!\nA we have. : q L
A W R v

thus -

- - 2 -l
- + 2 sinhmb ZMLs"' (e ats %‘)e i
94,/ m 2 sin\h mL )

@3/, Y2coshml § + L eme ,éf‘w"ﬁ* /é}"'é"g
2 Smw wi -
So

T-Tee _ 93 coshml® " cosh mL(1-§)
q—l /\<M ﬂ.\ Sinh mL Sinhh v L

- e 1ngla T~Too - CaS‘alML(l-i)
,{7” 12,‘ o, Th solated -'}\P. 3 fim Ty {which

As mbL > oo this becomes

15 dhe soluhim of 0robiom 4.30)
Teo _ e—MLG,
4 fem

-

which is equation (4.50) with Q1/km serving in lieu of
the characteristic temperature: To = Tw-
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4.32 A thin metal cylinder of radius, Ty, Serves as an electrical resis-
tance heater. One axial line in one side is kept at T Another
line, 2, radians away, is kept at TZ. Develop a dimensionless

expressions for the temperature distributions in the two sections.

. s T
LA . 4 5, qeme- it o™ vc6 o
2\

* Ao Y

be's: T-T,=0 av+ B8=0 so 2= O

2~T Y
T-T,= T-T, at 8=0_ = , = 1 ‘+9‘zk S,
T\M: T-T‘:-é_—_ﬁ.’: el+_e_ g___-e@
T,-T,  2kor 8, zxkor
Gl @ dTOsir, & 2. Den @:1(F- £) v ff ==
T, ' Tk
(0"6 zZ G,)

For the othar geqment -© = 27-0, ot T-T=Ta-T, 30 M

bo\u‘hw hecomes p ) . (e zﬂ)
-1N % °
@ = L 2Ot P /3 2k AT ﬁ

¢« 2 z
where f 2 8flo,-2m) . so ibuwe debne ®= ‘3«r°(9"1“\/"kb‘t'

6 -= BL’P‘FL) ..')9 (0,20%0) =
®)

\-—

nN>»0

il

A

pe"e‘{lﬂ 6:=0 0=
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4.33 Heat transfer is augmented, in a particular heat exchanger, with a
field of 0.007 m diameter fins protruding 0.02 m into a flow. The
fins are arranged in a hexagonal array with a minimum spacing of 1.8 om.
The fins are bronze and Hf around the fins is 168 W/mz-"C. Cn the wall

itself, Hw is only 54 W/m2-°C. Calculate Heff for the wall with its
fins (ﬁeff = Qwall divided by ‘l\vall and [Twall -T.J1.)

In this case: ml =/ h0D L = 1682 & - —
'\/———- =222 .02 = |,
k Zo* d loomy O°% L2148

Next define hp = Qe V. k(mL) '\"AV\\\(ML)/L :52;—"2-_ 1215 Yamh V215

A TW-T'” e —————

— .8
hA = 1324 V\)/wl- ° Ths characterizes heat o838
— rewmoval where the (i rer,aces Hie wa” .

A +na.‘3\¢= Lz‘ (0.0%) 205 60" = 0.6001463 w -

2 AV Y -<
0018 A&uw.uﬂ.A 3[6 a (0-001)1—1,92441) m

= 2\« o«
hege = AN D‘A Apa ¥ b (Aa““a.)]

= 1224 19009° + 5a(0.0001403 -1.924 (,355] /o,o(,o, 403

—

l‘e“ =-ZZSW/m‘—°£_ —
The Qms 'Haerecuw J,‘eu a Cov\SIAPrA.LJJ lmrraved heat removal ,
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4.34 An engineer seeks to study the effect of temperature on the curing of
concrete by controlling the temperature of curing in the following way.
A sample slab of thickness, L, is subjected to a heat flux, q,, on one
side, and it is cooled to temperature, Tl’ on the other. Derive a
dimensionless expression for the steady temperature in the slab. Plot

the expression and offer a criterion for neglecting the internal heat

generation in the slab.

[3 R
= -aboal e

2k k.

.LL L

S = g;- %1_

o Co= S+
q., - L R
T

When I < 0.1 we can
neglect internal heat
generation with only 10
percent error.
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4.35 Develop the dimensionless temperature distribution in a spherical shell
with the inside wall kept at one temperature, and the outside wall at a
second temperature. Reduce your solution to the limiting cases in which

Toutside > Tinside and in which Toutside is very close to r,

Discuss these limits.

inside’

“The 3&«@."41 solubha Is: T= S s¢c with b.es T(r,) =T

T
v T(r,) =T

- Co

m%: —r."- Vi *Ca — Yo=Vi - ¥¢

c 1, o= C [l o AT GV

T.= % ye, I o J Av
‘s

- (;’L- - V7 - ro
T.L_ ri, +('2_ J C;“ ]L ATEF‘

So.

-T. = To V‘c-} ) -__fg__{f_"_"g
T-T = AT AtS.T ! ; © ,-t.L r

where ® = f\"»&—‘\" )/(TL-To) amd we hare switched ‘he s:amsb
MC\\(& e.(bvaﬂ’\nldgr Poiﬂ*\v‘ , Then

ot @ - \_'_:rf_"_.: \m(’\‘ 1e the Y‘CSWH’ Lor o

Vo, P

u Swuw\@nlk r'fa,lm (See 2'3—-
Soluhim $o 2.\5’)

Vote: This could alse be writrenas: _
-—L:-.&._T,L—Tu__f;ﬁ oF as T-V ‘:_x:_
T~ T, -Te C Ti-To r
Aend .

bt oy e Lo (*—ﬂ: T Ll s Phe
e g 'S Vo Vi T _E;—: resule for o
?\w-u. C“tb o‘C‘
Huckaess r,-7;

4.36 Does the temperature distribution during steady heat transfer in an
object, with b.c.'s of only the first kind, depend on k? Explain.
Fow such a \Dm\o\om we.  have VT =0 or-‘-'a/lﬂ wnd Tlezw) =T

T=w.) = Toyebe. Thus T, = R -T), A\, L c'_};k).‘\\\.s
S\VGS G var, mm °C,wm (M\j so w\'\'hq_hmmé qu"\';dnw?s.

&\\( ____, KCOMW\ &w*&r\(-q_ -

ol "-‘-Tz"'\;-)> in_Hie probléem also,
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4.37 A long, 0.005 m diameter, duralumin rod is wrapped with an
electrical resistor over 3 cm of its length. The resistor
imparts a surface flux of 40 kw/mz. Evaluate the tempera-

ture of the rod on either side of the heated section, if

h = 150 W/m2-9C, and Typpient = 27°C.

Q + etar side = - (0.03 (T (0.005)1) 40,000 = 9,42 W

e o Q . ! /

Frow e%_uafnw\ (4.51) we have : 10 = km QAT , but

M;."HI - jAgnso) - -1 d
kD 164(0.608) = 27.05 m so AT~ M = 108.2*%C

164(23.%8)

TL@P&Q‘W& Me hase 'l"&m?ﬁ-ﬁa.'l"u.& IS \p = 108121 = 135.29C —=—

4.38 The heat transfer coefficient between a cool surface and a saturated
vapor, when the vapor condenses in a film on the surface, depends on:
the liquid density and specific heat, the temperature difference, the
buoyant force per unit volume (g[pf - og]), the latent heat, the liquid
conductivity and kinematic viscosity, and the position (x) on the
cooler. Develop the dimensionless functional equation for h.

W= \'\(/);. s Cr; ) (rsah-Tw) , »‘-CS ] a[r{—’fa)J \<J7S) X)

_ ARN
J kg T J < T m?

5 22 o = 22 = T om
Mt s-%C m2 kj-°C °c kq stmt ml-s S

We have 9 vanables \n 5 dimensiomns (T, w,5,°%, kJ)
Ths qives 4 TT- rougs . The method 1n the Yext

will -2 used 1w Hhe correct sequemce - - we
Nu*=-£u('ﬂ-, 'Pr)‘Ta) w\@t( B Pf-:-/MCF/k ;Ka EE;?‘E:

Nu‘: b‘-z.~ ) -\"'zf‘(t‘r(_’ﬁ)jkfg*‘,

mwav

(0Of course other combinations are also acceptable. See
details in Section 8.5.)
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4.39 A duralumin pipe through a cold room has a 4 cm ID and a 5 an OD. It
carries water which sometimes sits statiomary. It is proposed to put
electric heating rings around the pipe to protect against freezing during
cold periods of -7°C. The heat transfer coefficient outside the pipe is
9W/m2-°C. Neglect the presence of the water in the conduction calculation,
and determine how far apart the heaters would have to be if they brought
the pipe temperature to 40°C, locally. How much heat do they require?

< Ya
2ud i = ,hP = /2 moos) - 3.
P A 1642-(0.05"~ 0.04%) 42
_O-=(-1) _ \
= 4¢ _(_7) =0.1449 = Cosh mL a'\' Yhe M\ern“"

So Lj 'Fr\tvl MA ervr, ml=2.992. o L= 0O.143 m

Thus Yhe heaters mushk be s?ac_ea e-vva, 1.48(91—:
and

%— = '\/ 164 T (0.05*-0.049) 9 (o.os‘)l@o - ('7)),‘\;0"\" 2.§32=15.82W

©0.289

Fw heat @low LOH\ \Q‘H"%malr\", Q:Z(]S.B'.‘_) = 37.c4 ~=—
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4.40 Evaluate d(tarhx)/dx.
d4anhy - A_ E.‘-E*H - e* + e-x _ 2 e & {é‘-‘- E-J
eAx, dxle re’® err et et (eree)t
1 e
- e*re - *-e)*

(£:+ &-le
ezt oezxaz-€ 4 G
(E.: + E-—f.}i [aﬂ + E-F}
& ¢
N (C_as.‘l-'n w )t

4.41 The specific entropy of an ideal gas depends on its specific heat at
constant pressure, its temperature and pressure, the ideal gas constant
and reference values of the temperature and pressure. Obtain the dimen-

sionless functional equation for the specific entropy and compare it with
the known equation.

izs(cr;TJTfﬂ{)KJ;Ff‘:-)R-) '?Vﬂr (R,] %—:nﬂ-,%ﬁ?"3w
ke f‘;ﬂ‘( . K ﬁi E’- %; 3 4'ﬂ-amuf$

%1L(%—E‘%F%ﬂ5*

This 15 imthe ‘Fonn

of the kunown result: %:‘ %PﬂT—- - ﬂhh —
re
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PrROBLEM 4.42 A proposed design for a large freezer’s door has a 2.5 cm thick layer of insu-
lation (k;, = 0.04 W/m-K) covered on the inside, outside, and edges with a continuous aluminum
skin 3.2 mm thick (k,; = 165 W/m-K). The door closes against a nonconducting seal 1 cm wide.
Heat gain through the door can result from conduction straight through the insulation and skins
(normal to the plane of the door) and from conduction in the aluminum skin only, going from the
skin outside, around the edge skin, and to the inside skin. The heat transfer coefficients to the
inside, h;, and outside, h,, are each 12 W/m?K, accounting for both convection and radiation. The
temperature outside the freezer is 25°C, and the temperature inside is —15°C.

a) If the door is 1 m wide, estimate the one-dimensional heat gain through the door, neglecting
any conduction around the edges of the skin. Your answer will be in watts per meter of door
height.

b) Now estimate the heat gain through the aluminum skin that wraps the outside and inside of
the door. Heat will be conducted from the outside, around the edge of the door, to the inside.
For this calculation, assume that the insulation is perfectly adiabatic and ignore the bottom
and the top of the door. Your answer will again be in watts per meter of door height.

c) Suggest a few design changes that might reduce the heat conduction around the edges of the

door.
Qwa'\uuw. S\L.\\A
(3.2 pm Hack)
tnsulat-tou E
ZS—OC, [ /— b
[F——— — i e e '_"—',
!‘\ ZE'oM\\\\\: ‘\\\\ ijl[
R
=== { a = Seal
Dugw
-_(Cﬂo
M
SOLUTION

a) In this case, we can make a series of one-dimensional thermal resistances on a per-unit-area
basis (I m width and per meter of height). We assume that all the heat flow is through the
aluminum into the insulation and out the opposing side.

Tair, ot "NV N—"VW— NV W— N N— AN Tiir.in
1/h, (t/K) Al (t/K)in (t/K)al 1/h;

The equivalent resistance is
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_ 1 2(0.0032) 0025 1

T 12 165 0.04 12

= 0.08333 + 2(1.939 X 107°) + 0.6250 + 0.08333
= 0.7917 K-m?/W

Note that the thermal resistance of the aluminum is entirely negligible. Since the door is 1 m
wide, the heat gain per meter of door height is
Q _ Tair, out — Tair, in _ 25— (_15)
normal R 0.7917

b) Here, we can model the inside and outside surfaces of the door as very long fins. The are
separated by a conduction resistance for the aluminum that passes over the nonconducting
door seal. For all these resistances, the problem asks us to assume that no heat travels through
the insulation.

Tair, out & \/ \/ \/—‘ \/ \/ \/—‘ \/ \/ \/—' Tair, in

Rﬁn,out (L/kA)Al,seal Rﬁn,in

From eqn. (4.51) and (4.56), noting that only one side of the fin has heat transfer and
evaluating A and P per unit width of door (A = t,;, P = 1), the fin resistances are

1

= 50.53 W/m

equiv

1
Rﬁn,out = — = = 0.3973 K-m/W
Vkanp  V/(165)(12)(0.0032)(1)
1 1
Rgnin = = 0.3973 K-m/W

Vikanp  V/(165)(12)(0.0032)(1)
and the equivalent resistance is

0.010
(0.0032)(1)(165)
The thermal resistance of the aluminum is 2.3% of the total thermal resistance. The heat
gain per meter of door height, accounting for both the left-hand and right-hand sides, is
T — Thir 25— (-1
Quige = 2= =2 50.8(1355)

Additional heat gain will be associated with the top and bottom edges, each 1 m in width.
The edge gain substantially exceeds the heat gain in the normal direction.

Requiv = 2(0.3973) + = 2(0.3973) + 0.01894 = 0.8135 K/W

= 98.34 W/m

equiv

¢) Some improvements could include:

« Change the material used from aluminum (k = 165 W/m-K) to a stainless steel (k ~
15 W/m-K).

« Reduce the thickness of the metal skin from 3.2 mm to 1 mm or so.

« Introduce a “thermal break™ in the skin at the location of the seal, to interrupt the path
of heat conduction. This break could be, e.g., a joint in the material that incorporates a
layer of nonconductive material.

« Make the inside skin of the door out of a hard plastic, rather than metal. The plastic
might be ABS (acrylonitrile-butadiene styrene) or HIPS (high impact polystyrene).
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PrROBLEM 4.43 A thermocouple epoxied onto a high conductivity surface is intended to
measure the surface temperature. The thermocouple consists of two bare wires of diameter D, =
0.51 mm. One wire is made of Chromel (Ni-10%Cr with k, = 17 W/m-K) and the other of
constantan (Ni-45%Cu with k., = 23 W/m-K). The ends of the wires are welded together to create
an approximately rectangular measuring junction, with a width w ~ D,, and a length [ ~ 2D,,.
The wires extend perpendicularly away from the surface and do not touch one another. A layer of
an epoxy (ke, = 0.5 W/m-K) separates the thermocouple junction from the surface by 0.2 mm.
The heat transfer coefficient between the wires and the surroundings at 20°C is h = 28 W/m?K,
including both convection and radiation. If the thermocouple reads T}, = 40°C, estimate the actual
temperature Ty of the surface and suggest a better arrangement of the wires.

SoLuTION The wires act as infinitely-long fins extending away from the surface. The epoxy
layer acts as a thermal resistance between the surface and the ends of the wires, which we can
approximate as a simple slab resistance. Thus, we may build a resistance network consisting of the
epoxy resistance in series with each of the infinite fin resistances, which are parallel to one another.

RCH
R

—AN——
ep
-— T +—N\\N\N——T

air

From eqn. (4.51) and (4.56),

Ry = ——= . = 2533.5 K/W
Vianp  (17)(28)72(0.00051)3/4
Ry = 2 = . = 2178.1 K/W
Vianp  V(23)(28)72(0.00051)3/4
te _
R S 00002 = 768.9 K/W

ep = kep(Dyp)(2D,) ~ (0.5)(0.00051)(0.00102)
The temperature T,, may calculated from the resistance network in several ways. One way is to use

the so-called voltage divider relationship (see Problem 2.48):

R,

1
R., + (Ra' + Ra')

768.9
768.9 + [(2533.5)1 + (2178.1)~1] "

TS - th = (TS - Tair)

(T, — 40) = (T, — 20) = (T, — 20)(0.3963)

Solving,
40 — (20)(0.3963) o
L= 03063 — 2L¥C
Thus, the measuring error (13 K) is about 40% of the overall temperature difference (33 K). The
thermocouple reading obtained this way is virtually meaningless.

A better arrangement would be to lay the wires onto the surface, rather than putting them
perpendicular to it, so that fin heat conduction in the wires will not cool the measuring junction.
Remember: thermocouples measure the temperature at the junction of the two dissimilar metals.
Temperature gradients in other parts of the wires do not matter.
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PROBLEM 4.44 The resistor leads in Example 4.9 were assumed to be “infinitely long” fins.
What is the minimum length they each must have if they are to be modeled this way? What are
the effectiveness, €, and efficiency, 7y, of the wires? Discuss the meaning of your calculated
effectiveness and efficiency.

SoLuTION In the example, the fins were considered to be long enough that tanh mL ~ 1 when
calculating the fin thermal resistance from eqn. (4.57). We must make a judgment about how close
to 1 we need to be. If we desire no more than 1.00% error, then we need tanh mL > 0.9900. A
calculation gives mL > tanh™" 0.9900 = 2.647.

For the wires considered in Example 4.9

3 | hp 3 (23)7(0.00062) (23) B _
m=\rka” (16)7(0.00062)2/4 \/(4)(0.00062) = 96.30 m™!
2.647

~ 96.30
This length amounts to 44.3 wire diameters.

From eqn. (4.53), the fin efficiency is
_ tanhmL _ 0.990
TE T T 2647
This value is significantly less than one because much of the fin is at a temperature closer to the
surrounding air temperature than is the base of the wire.
From eqn. (4.55), the fin effectiveness is
o= i fin surfac‘e area — (0.374 0)71'(0.00062)(0.02749)
n cross-sectional area 7(0.00062)%/4
Thus, the wire manages to remove 66 times more heat than the base area of the wire would remove
if the same heat transfer coeflicient applied to it. The reason is that the wire has a low resistance to

heat flow and can effectively lose heat over much of its surface area, which is 177 times larger than
the base area.

so that
= 0.02749 m = 27.5 mm

= 0.3740

= (0.3740)(177.4) = 66.33
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PrROBLEM 4.45 We use the following experiment to measure local heat transfer coefficients,
h, inside pipes that carry flowing liquids. We pump liquid with a known bulk temperature through
a pipe which serves as an electric resistance heater, and whose outside is perfectly insulated. A
thermocouple measures its outside temperature. We know the volumetric heat release in the pipe
wall, g, from resistance and current measurements. We also know the pipe diameter, wall thickness,
and thermal conductivity.

Derive an equation for 4. (Remember that, since h is unknown, a boundary condition of the third
kind by itself is not sufficient to find T(r).) Then, nondimensionalize your result.

SoLuTiON  For steady, radial heat conduction in the pipe wall with volumetric heating, the
heat conduction equation (eqn. (2.11) with eqn. (2.13)) can be simplified:

0 0 0
13<ra_T)+162 s +g'_1%1
ror\ or r2 g2 z2 "k abt

Here, we have assumed that T}, and h vary only slowly in the z direction. Integrating once:

oT  qr*

FW+§ _Cl
aT_ C'II’ Cl
ar - 2kt

Integrate again:
)

.
()= -1+ cinr+

We get C; from energy conservation applied at 7, with the edge at r, adiabatic and q,, > 0 for heat
flow in the +r direction:

27nqy, = —qr(rg — 1)
or
_ 45— 1)
T an ke (@ -r)
e, T2 T T T
o - A5 —r) _a
17 2k 2k 2k
We need T(r,) — T(#), in which C, cancels out:
W3-1) , oo
T(,) = T(p) = —————>+C In 2

Now we can apply the 3"9-kind boundary condition, noting again that q,, > 0 for heat flow in the
+r-direction:

Quw = h[Tp — T(m)]

(12 — 1)
T

_ (5 —n') a2 n
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CI(V()Z - }’22) Answer

J },.2 _ ’,..2 )
2r; T(ro)—Tb+% - C;LI‘;ln%’
We can now compute h, since we know k, 1, 1;, ¢, and the two measured temperatures.
Now we recall that we have nondimensionalized i as the Biot number in situations where a
conduction resistance is in series with a convection resistance. With the pipe diameter D; = 2r;, we
write Bi = h(2r;)/k. We also see that the radius ratio appears naturally; call this p = r,/5. Putting

these groups into our result and rearranging

h =

_ (p2 - 1) Answer

1=
k[T(r) —Tp,] (p*—1) p2
e

The first group in the denominator is also nondimensional. This group is similar to 1/T" in Exam-
ple 4.7. Note, however, that if ¢ — 0 then T(ry) — T, must also go to zero in a steady-state situation.
Similarly, if ¢ increases (with other things held fixed), then T(x,) — T}, must also increase.

Comment 1: Thin walled pipe. If we assume that t,, = (r, — ) < £, the wall behaves
like a one-dimensional slab. Then Ty ige — Tinsice = qt2/2k from Example 2.1. From energy
conservation, q,, = gt,, = h(Tisge — Tp), SO that

th = h(Toutside - qtl%v/Zk - Tb)

and so
Answer

h - th
(Toutside - Tb - qt%U/Zk)

Comment 2: This experiment is best for studying fully developed turbulent flow inside the pipe
(see Chapter 7), for two reasons. First, in turbulent flow, the fluid away from the pipe wall is well
mixed and very close to Ty, over a large part of the cross-section, making the bulk temperature
measurement less difficult. Second, in fully developed flow, h does not change in the streamwise
direction, so that the result will be less susceptible to axial variations. (Note, however, that T; will
always increase in the stream-wise direction if g # 0.)
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S.1 A body at Tp = T; with Ri << 1 is immersed in a bath at

t =0. If Thaenh = T3 + bt, plot Tbody = f(t) for the
case in which Tp. < T; - bT -
1
As in Example S.1, the general solution is given by eqn.
(5.13)

Ty - T; =Ce T 4 bt -1

and Cy = T, - T; + bT so the particular solution is
i

Th =Ty + (6 =T + (T - T + bTr e~ t/T

TTT

5.2 A body of known volume and temperature, initially at T;,
is suddenly immersed in a bath for whi«i’l}‘r

Thath = T + (Tg - Tjle
where T = 10T. Plot Tbody from t = 0 to t = 27 = 207T.

T _ T-N (v-T¢ ~T.
%:a "—2 ov ‘LAT—>= - ’T—‘J-L +(1‘,'Ti)eklv
The ). soln. of Fhe howo. ean. 13 T-7 =Cle”“‘Ir awel Hee ()ar“lcul'

ar 8olv - of the Cm?"l—‘ e%,n. wmght be fousd bb Su\as\-»}-uhuj

T’T("Ae‘ua 4 Se-t/“ m the de. and ad v.s"'m:) n»é, B 4 sahs-
fg .o gﬁ‘f B:0 omd As G TP =0

T, _ To-T, t/c -i/T
T T \_*_‘_\Te +Cle,
© [} kg T
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5.2 (tontmued)

=0 wes C, = =
t:0 4 1 T
j < +1
T-Te L( t/t -t/ ¢ T-T, T t/t
T,-T, T " e P T, T fnl -
e "t |ua time
T-T: 4
To"TL - /
/
6 T //
S F \/
A - bath Y,
/ reS?Wsc
3F
G PRI, .
. = gl -]
///
1 == < _T_ -‘t/f
= ‘IQTG
o pm—l. L A l 3 -
P A 2 t/T
- k.

5.3 A body of known volume and area is immersed in a bath whose
temperature varies T, = Tpaan * A sinwt. Find the steady
periodic response of the body if its Biot number is small.

Defne . @ = Tl= JTE/CV/LA‘ TL/T Q= ST The

AT = -T-T"‘*- Asadt becomes -‘—’-—8— +@= sllv
T art

The gﬁmuwos‘s'o\'n o[:--]'he hmca,a«ew; eﬁrn. s © = C|ehf . Tha
f}f\'«cu\\w Sol'n. o-c‘h\o Camlo\e\—e e%m. Con 2 '(luumaﬂ \OJ ‘\'v’a‘u}
B = Cioslt +Cysm v T c:»-m‘)lea\-e egn. T awar

"—O»C-L Sin{LT + ﬂ.C:, cos{dt + C,_cg;.n.t + C, sinlT = ST

oY
C"-(lC-;*’Cz "‘) sia AT + (—QC; “'Cz)fo.s—ﬂ»’c' =0

Thes will Le 'IYuL n( C,_=—,ﬂ.c? A-J f,‘;:v—-’:.T . Then the

114

Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



§.3(Can+1nue.n
pcw\-(c,u\a-e soluton oﬁ- dhe ComF‘c’rz eq_uahw (51

_ R :
@ = C‘@ —E\ COS-n-‘P' -(—-n::*_‘ Sihﬂ’t’

- - )
@ - C,e - _‘(1,1_—,[»&@54?— S/nf).’f]

-— = = -— '/L = L
A‘l: hme T—'-O) @ ®o = C, s so C, = ®°+.ﬂ."+l

w here @a wight be awting behueen 0 und |, we wish &
Seecl(ﬂa. h«?j‘ 5 J) /}

- ~
® = @oe “5.“-71 (Jlasﬂ.‘t’— Sm_(L«:'-_(Le"'> -

A'H:'r‘ a [w 1’7u.¢ [\t >.32:~ or T2>3) “th.s ﬂa/uce_r b
ftt.e S%/Af(ad/tc .S'a/u/VM.'

® =,">-;,}_H (.D.cos.n.'t ~51n (AT ) —=

Now use the \—naonome\—nr_ Y| e\d’\\"_-,

e -1
A Cos X ‘/’55:»;. = /4 L BL 5/4%7"&08;"— )
-Re

¥/, }{)Ij Case !

Necoslt=smr = o/ 1 5 [T~ cor",Lr—/ =)

P
we mpemllé /é E %c/éa.ce /y am;,& Th o
{
@Dfefwaltc.-‘ —.‘7.0}-&\. sin (0T —/}ID D
’ [—) L)
0 L ampltude <] - ()4/3430"

Sappese, aample thet ST == 4. T“"“/@zcos"'o.'lo1-4s°
N '\T/‘k r tana$ Oﬂ\a,\ 'H\‘ amr\l\-u.Aa s 0.107,
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5.3 (cowhnued)

i@A

0'70’) —_—t e .. e et meiemm A m A e ma e men e & e aem ame
i ¥ |
O /2. 1T /2 s
Aimemsionless ‘hmz,‘t/‘r= T
/ w
-00] —t+—- —_— -

~1
batykmruuhwe—J/fz;ilax%@npquVﬁg

Notice that €§peplodlc = £(T and ). When O C(or WT) is
large, the process can be regarded as slow and ® = ®bath
= sin(IT. When Q is small the process is rapid, B = 909 and
the amplitude of the response goes to zero. In a rapid
oscillation ® =»0.

5.4 A copper block of volume, V, floats in
mercury contacting it over an area, A_, e
and exchanging heat with it by convection.
The mercury container also exchanges heat
with the mercury itself by convection. The
entire system is initially in equilibrium T=T. & t>0
at temperature, T;.
Fredict the response of the copper if the container
temp. is suddenly raised to T, and if Bi_, and Bihg << 1.,

. Tg m=3C
F,( Hie corftv- ﬁCV) (LA) (T- Ta\) ov ‘3; = 1_-_fz_. ®
$or e maercary: dTa | T5-Ta

. at - T ©

This s exac“s the secemd -order \um ed ca ac«Mc roblom solved
n the Yext . The selution s eq_h (s.23) which wre £ugc\w¢$€ as
‘o“ows

T ~-Tg _ i* (P _E;—y[ z*Jb—): (“JT)T)£

T, T J(”T)"-c z;;(jl;) ¢
he
w\u«. L;%ﬁi*ﬁ and C.E‘/'gf..
T‘ "T’ a.* at
This can be rewntten ac¢ ‘..F—T = A,e + AIC 1
c 'S
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5.,4' (Cn-‘-muec‘)

ab teo, TN ogn cWBE L 1o o
=T 7_'1 (%)1_? i

4 =0 T = ° Ar(
at t sV Tz se Hom eﬂr“'® dT:O-(F‘»T..)(A‘a,-&- Az“t\
Thus - APT;:: - 22 We see Yt both sides équal %*r so e

-b,
Secav\A be. s A\So Sa.“-l:'(\ecj, ‘:WMHJ: e eacPec{. '{‘L‘=9'I‘s

Te-T — .
t S

be V\taa-‘we. a, DL\houS[j 1. a4, g alss vu,aa'l-\ve Bec‘uu.re

b s « pos-h.rt numbe, 34‘(:«.‘('% ‘HAMC.

5.5 Sketch the electrical circuit that is analogous to the
second order lumped capacity system shown in Fig. .S,

/h A VAN
/ AES T
. \/WV\/—0® AN o)
Tq, \closc. swikel
“'b lulh&*&
= e T~ (pev), T~ (peV),
T )

-

—
—
-

To see thad s 15 vald we wribe Fhe uddd eq,ud‘l.w\.s
b nodes @ MA@ as aw E .E . »uald'.

V\o‘lC @
ch)z&- v 27 TV g
ak YA ViA
MOAC @ @ AT; - -T
V) €0 4 Lol
' dE 1/ A

These equations are identical to equations (5.16) and
(Z2.1%) , respectively, so the circuit is correct.
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S.6 Flot h yg. (Teph

with the problem in the text.

- Tgat) for the sphere guench in the figure

— -~ At
U Alspn - T - = pcR 43&11——
T -:.ch —Z—f—- = h AC“;\,\, Teat) h /’ = Tsfh"‘-ke
R _ coca(33a) 00254 T Bl 030482 0L _ Biu
fe3 %954 )_?ng'wakfum 8 e e T 0T g
Thew, scaling points from Yue Figume: . ar °F | + Biu
L 7000 (g Veud)’s | G 5 | W Gnr
l,,— 365 ~ 21\ 30/40 3.8
< 1%6 -21\ d2/40 35.4
= M -2u z15/ 40 5.
~ PATI 11 q65/a0 c4.%%
J 6000 g1y - 20\ Gs0/2S 122
~ 41 - I\ 993 /1.5 T84
.ﬁ By - I 843 /.2 1922
(l) 39 343 /8.2 i’lg’?
ne {
6000 Et 9:13 fqo 3525
< - 4o/40 512
_.‘\
: 400
Jd 1 .
i Peak value hoas:
§ . (Gooo Brulétt-e-2E)(0-04111)
Bi = 5 (225 Bru/ ft-Wr-°F)
!_g = o. 43 This S sumew\ﬂo)(
_é \“B\. but on‘a at
- 2000 Hue ?eakm
¥
.~

ll

k{-Ta]

(’/;}Am - Tsak ) °F

100

S.7 The temperature of a butt-welded 36 gage (0.127 mm diam.)
thermocouple in a gas flow rises at 209C/s, and stays 2.49C

below the gas flow temperature.
the gas if Pc = 3800 kJ/m3-°C,

3.8¢10)8(0.000127)

Find h between the wire and

cR 120.7
T = — = P— = — = —
hA 2h 4h h
but
dT,, Tg = Ty 2.4 — —
—_—= 20 = = h 3 h = 1008
dt T 120.7 m2-0¢
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2.8 PFredict the temperature at the point Fo = 0.2, Bi = 10 or

Bi~! = 0.1, and /L = 0, and compare it with the graphical
value in Fig. 5.7.

To do this we use eqn. (35.34) with (ALY values generated by
eqn. (35.35): ctnd(XL) = AL/Bi = 0.1¢{(XL). By trail and error
we get: (AL)>y = 1.42887, (AL)o= 4.30580, (AL)5 = 7.22811,
etc. Using these numbers in egn. (5.34) we get:

@ = @- 1-4?.6812(0,2.) 2 s (1.42801) cos (142887 (S])

1.42887 + 514 (1.92827) Cos(/.92887)

-+ 6’4'3“31‘\0'7-3 2317 (q.30538) Cos O
4,305 +s:n (9- 30578) ess (4.305'8)

2
-7 2)
® = 0.83%% -0.00%5 +0(e 723 (o )

0.8293 t——

From Fig. 7 we read @ £ 0.82 or 0.83 so the results agree
within the accuracy with which we can read the graphs.

5.9 Prove that when Bi is large, and the b.c. of the 3rd kind
therefore reduces to a b.c. of the 1lst kind, ean. (5.34) reduces

to (5.33)

The eigen value eqn. (5.35) becomes ctn)L = O or taniL = =, so

AL = %, 3 %,..., n % where n is odd. Therefore egn. (5.34)

becomes: =1 ¢= sin %;
@ =§e-( nT" )ZFO 2 sin nT“ cos nT" (g-1)
n=odd 921 + sin r% cos nTn
C\= o
= %} ) Fo  sin B©

R
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5.10 Check the point Bi = 0.1, Fo = 2.5 on the graph for slabs in

Fig. 5.10.
First we go to egn. (5.35) ctn AL = %ET and get AL = 0.31105,
3.1731, etc., by trial and error. Then we put egn. (5.34) in

eqn. (5.36) and get:

. , - (1) %F,
o = + |rne- (AL)F, 2 siniL sinaL(g-1) | aF = - © -1
) AL+sin)L cosAL | g=2 o AL
(0]
« __2(sin’iL)
S0 , AL+sin)L cos\L
- _ 3
o= 1-e .31105% (2.5) Z;sinz(.31105) , l-e 3.1737(2.5)
0.31105 .31105+sin(.31105)cos (.31105) 3.173
. 2
% 2 sin” (3.173) +
3.173+sin(.31105)cos (.31105) ot
or

-y

® = 0.2148 - 0.0002 + ... = 0.2146 -=r

From Fig. 5.10 we read ¢ = 0.22, which agrees within graphical

accuracy.
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5.11 Show, in Fig. 5.7, 5.8, or 5.9, where b.c.s of the third kind may be replaced with b.c.s
of the first kind, where we can assume lumped capacity, and where the solid may be
seen as semi-infinite.

Solution We choose the chart for a point midway between the center and surface of a
sphere.

This region will effectively be
semi-infinite as long as the
change of surface temperature
does not penetrate all the way
to the center. That will be

true for very low values of Fo.

1.0 TEEE
0.05]
[ o
! TTT
| 0.5
Il
o | LI |
[ |r/ro=0.5] L]
0.0 IR O O B
0.01 _ 100
We may treat situation Biot number, Bi = hr,/k We may treat a situation
as lumped capacity in as a b.c. of the first kind
this region of low Biot in this region of high
numbers (less than 0.1) Biot numbers (greater

than 50 or so.)
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5.12 A ribbon is heated by a.c. as shown: _____ . —\:\22000%\_/‘_.2

How much does its temperature 3 ‘0.000051-. -vt:o.sq(m)'g”-j-l;
fluctuate? 2 ) k=13W/eC 2
WS 2600(0.00605) _ N\
Bi="= = = 0.00163 (>
L\, S % (zn &0) (o o666S) - 0.2772
R o3x(oyS

A P

“Va

Frow Fla.§.l\ we thew read M >~ 0.0\ -

so the temperature fluctuation is just a little over one
percent of the average temperature difference between the

wall and the stream.

5.13 Resolve eqn. (5.58) into appropriate dimensionless groups.

Th Vs case: K= K(KAT)/DBL%,/’;_C‘:(_, k).

Thuws Hice are

€ bosic vaciables 1a I, m, kg ,°C so we loole for o

'TT-aqus: L (M o MDA\‘CIGJ. :Y“’)

The aq_n.(_S'.SZ) can Ye rearcr as ._

£ Ta,.a

jor @

which confrms ’\'B e dim. MAL—\S\J . =

S.14 The water column shown is initially at 1020C,
Then it is suddenly depressurized to 1 atm.

a) When will the temperature reach 101.95 at
the bottom?

b) Flot the height of the column vs. time,
up to this time.

101.95-100 _ — kK o_k/L
0) @@= —os “0S ad e =0
et . 0.06(0.01)
from Fig 57, Fo-O0L=®3 £ %280

T= Ts‘*_-—too‘t

alrert =0 5

T =102%C

l-n—0.0']m ———-I

b;m'

£ =1740 sec o~ 29 wuku‘te.sj

[T

t \t
b) ioq_c“: = ‘LAT'S ake Z.\LATJI where we have used eq_n.(&'.%)‘,fq

or‘m

VZAut}lw m\\ma’\\-‘» = (\S‘ %A )w\’- - 2k AV ‘J—- _2(0.68)2 '

ﬁ” 4 w-" ﬁh‘jﬁ;
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5.14 (Cem'f—lmaea/)

-6
We therebore o biuin: heiqht =(6.07-1.12010) ﬂ:‘}m -

7
ketap °
ol ©9.93| 1740 sec

CO\N.MV\ 63-%—
)
6.}
6.
ol D923 mm —
69.90 1 l 1 | —
l®) Soo leo0o 1S60 2000 t(se0)
Z.19 A stab with BRi = 2 is cooled. Compare the exact and semi-
infinite region solutions for &, on the surface.
ﬁjlz: @ @ 1.0 SCM\-\—\‘GM“‘Q
Fo |Bi o Fy.51 FigS.\6 reqon approximaha,
(e} o \ | @ ‘F\ﬁ.s‘lL
0.0 0.4 | 054 | 0.S6 exact soluhon
0.210.% 046 0.465 i £rovn Eia.S.7
03| 1.2 | .35 | 0.4 o5 J
04 | 1.b 0.5 0.33 s
0S| 20 | 0.%S 0.34 5
61S| 3.0 | 0.23 | 0.2 i
1.0O| 4.0 0.5 0.26 i
-5 60 0.0% 0.213 O||||‘11:x||nnn
0.5 1LO .
(o) S B .8
Since the semi-infinite approximation does not reflect the
influence of the insulated wall at x/L = 0, it eventually
shows a slower cooling than the correct solution.
S.16 Derive eqn. (5.62) from: .L‘i‘z“)_ -48 , ®(g=0)= cosL

248" did ®(610) = finibe
Assume @‘—-{(ﬁ) et so: % :2'&.('(:), hewce. § = C.é‘mﬁ Cgémg

d€*
but420= 1+ L -
£ et - cos‘-usm&-} so: @—_(c«:s?a>s£)_+-5mqs.ﬂL)(CgeE'-\C,‘e‘)

S

= cos(€-N) Lopew casts.

To accomodate the second b.c. we must get C3 = 0

-0
To accomodate the first b.c.: @(? :0) = CosC-N)C,e = cos{L

It follows that C4 = 1 so we get: @:e-ecosCQ-ﬂ):r

122

Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



5.17 A "steel" cylinder wall

is 1 ¢gm thick.
32/ (7800) (473) = 0.000008.67m</s.)

k/Pc =
temp.

(Take o =

The inside wall is

(4650 + 100coswt)PC and w = 278 = 50.26 rad/sec.
Flot the envelope of the temperature disturbance in the wall.

® = ¢ fcos(n-g)
so the euve\ope 15 3\\1% "'j ®==* ée where Q:x{g:l‘lo.l‘;x

ovd where: 1T _ T-6e50 - -170.25(# w)
@ T AT - 300 ’ 0 ‘Tenvc\o‘:e ¢sox300e
950
w 200
"_. énuelofc of— \rem\? o\-s-\—urb-
U] 3060
v/ Omce
700 l
| 1 i 1 —
ool Xm

600

TEMPERATU
&
o

500

460
350

It is clear that the outer wall
is effectively undisturbed.

$.18 A 739C, 0.4 m dia. pipe is buried in Fortland cement

k = 17.)

it.

1S°C

Plot T along a vertical ,
pipe and compute the heat loss per meter of pipe.

It is parallel to a 159C surface and 1 m away from
line through the center of the
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Q=k KT $=11(15-15)S

=1028
. N_8
WL\("C° Sjﬂ.f\\«,;\ = T 3
=2.6G1
M‘S‘ coski(s) 2292
- 214
_N4-2.07 _
[error == qa ~ ¢ (.7.]

Qafa?h\c4= 272 Wim
Qahdj"lcwl = 2795 w/n.



518 (ontinued) 75 —_
The varmahim Q\J i
with dephh N 8
ob'\ameJP g SO—
Fom Yue ’4“‘ 40 |—
£lux ﬂo*. 2_ !
5 K o) ot
[___ s
15 { —

o so AGFH\ \n em 100

.19 Obtain S for a sﬁhere buried in an infinite medium.
gemem\ soluhn for Hus case (_C_L E-xa..)aie S.10) 1s T=C.r 4 C~
wlbiels: Tleao0d= Ty 50 € 2Ty ; and T(r=R):T., sa C,=(T,To)R
st T-Ta (TR awd Q= 40ni(-w gi:\ra(l) * v amR (T &

It Lollows Yhat S ot -_4_41\—K~

%.20 Find S for parallel cylinders in an infinite medium. One
has twice the diameter of the other. The centers are one
diameter of the larger cylinder, apart.

Accarc‘-wj “'\;‘33 n Vable S,Z' M‘lklzl-klp:—‘.: ‘i é‘ leﬂl: ZY_‘-‘\Z*}-}-‘ s \%

e
Th =T - 2m

e S = il -
MA\]*’\CA\ COS\:| ||—2 Y a,;w' % o0.L0+1L07 ?_.l&_

1

S

"
H|z

Elux F\u‘\'
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S5.21 The 3 in. by 3 in. copper siab

(1 in.

thick) shown below

conducts heat from the 1009F surface on the left to the
1 in. portion of the right side which is kept at Q0°9F,

PITIANNTIPANNNITIIFN

T 1)
/ X
/\.\ //\‘\ /\/"
- ~
N=6 /K ,,\\( /\\
\/\ \ /’.'—
? \\// \\
/ N \\ —
g / \
N
N
w N
“
8| . 5
il [
| I
2 an
1
Q
z 2
| ya 3 i
4 —
o 6 g 3 15—‘3 -
V77 ANV 7751 TNN7777
= T= 2 2208™ _ (o-90)° By £+ Bhw_
Q=S IAN 5 2265 ¢ (too-90)°F IS0V = 13- = 12565 ~_
= 1507 (._13_*;‘: = 3B.D W =«

5.22a Obtain the shape factor for the following shape.

e

)
a
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= M

S5.22b Obtain the shape factor for the configuration shown.
Evaluate T at point A.

:k—\:‘&_‘s_g—‘;
S T 325 .03

.\7\ = QOO+§;(:OO)
Ta=238.5°F '
=3 I

S5.22c Find S for the inside of
the form shown.

202)

S = — =

6.8

o

29

S\ /7 N\ 4 \ - 4;

S5.22d Find the shape
factor for the
region outside
the same form.

Wmsylated

T\ f(%l on TV

~ 0.4 CL\auucls

N
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$.22e Find S for the shape
shown and the center
temperature.

s N 0.4 + 3 + 0.6
o1 425 -
_ 2.73
Tc = T1 + 4'25kT: - T1)
=T + 0.65(Tp - Ty)
5.22¢ Find S for the shape 7ANNC7S -
below, and evaluate k
T at point A. , ;
S = e = —_—— = e ) 2
T=—— =0 Ty ot T:I prre
because the thermal 03 "_—“
. . . €3 = S 1
resistance is in-—- [
finite in length. —
Ta =0+ = (50 - 0y = 209C h l-'-ofl
) 50°C_
S5.22g9 Find S
Notice the

symmetry:

N must equal I

so § =1

PO IASNNNNE ST T

(There are some interesting ramifications to this problem.
See J. Heat Transfer, Vol. 103, No. 3, 1981, pp. &00-1.)

127

Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



S5.22h Find S

- Z

0
]

PIFI 77T

2

S.22i Find § and Ty

Thus the singular
point of infinite
resistance in the
center blocks all
heat flow from

There is an infinite
number of iso-
therms in the
center.

Ty to Ta.
1 2 Tz.
T
Ta = Tn since all temperature drop occurs across the
——— point of infinite resistance in the center.
S.22j Find S for the form shown Sym

" Then for the total

This form has 4 axes of
symmetry. We therefore
isolate the stippled area &
and do a flux plot for it.

We get (see Frob. S5.22g)

th\

Sb = 1.00

shape

twice as many channels

SE=

twice as many isotherms
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5.23

= hd
The two copper slabs shown are T; Loosc

suddenly laid together as
shown. Find the temperature

of the left-hand adiabatic side
after 2.3 sec elapses,

=0°
Ti o°cC

By symmetry, we see that the

pr— 0. 030

interface must immediately 0.03m->
assume--and retain--the
average temperature of 50°C.
-5
Po= ot 11.57(10)2 (2:3) _ 4 206 and Bi-l -k
° 1 0.03 - ' hL
T -T
t,
Then from 5.7 we read = Tad.wai% L 0.61
lleft int.
T = - = ° el
so Tad.wall 0.61(100-50)+50 80.5°C
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PROBLEM 5.24  Eggs cook as their proteins denature and coagulate. An egg is considered to be
“hard-boiled” when its yolk is firm, which corresponds to a center temperature of 75°C. Estimate
the time required to hard-boil an egg if:

a) The minor diameter is 45 mm.

b) k for the entire egg is about the same as for egg white. No significant heat release or change
of properties occurs during cooking.

¢) h between the egg and the water is 1000 W/m?K.

d) The egg has a uniform temperature of 20°C when it is put into simmering water at 85°C.

SoLuUTION  We approximate the egg as a sphere of diameter 45 mm. From Table A.2, ko, =

0.56 W/m?K and ¢y, = 1.37 X 1077 m?/s. Then
h :
Bi = kro _ (1000)(0.045/2) _ .-
- 0.56
Additionally,
T-T, —
0= © = D=8 _ 1539

T,— T, 20-85

The cooking time should be long enough to use the one-term solution, since the temperature
change will have strongly affected the center of the egg by the time it is hard boiled. For this value
of Bi, interpolation of Table 5.2 gives us

A ~3147 A ~1.991
The Fourier number is found with eqn. (5.42)
® = A, f; exp(—4jFo) (*)
In this case, we need f; for a sphere from Table 5.1, in the limit as r — 0; but recall that
)lci_r)% % sinx =1
so that we will take f; = 1. Solving eqn. (¥) for Fo = at/r}:

0.1539
1.991

Fo = —(3.147)72 ln< ) = 0.2585

Finally:
Answer
t = (0.2585)(0.045/2)? /(1.37 x 1077) = 955.2 sec = 15 min 55 sec ~ 16 min «———
To check our answer, we can look at the first panel of Fig. 5.9. For this Bi and ®, the Fourier
number will lie between 0.2 and 0.3, perhaps at 0.27 or so. The chart cannot provide the accuracy
of the one-term solution—as noted on page 216, for this value of Fo, the one-term solution has an
accuracy of about 0.1% relative to the exact result. Chart reading has an accuracy of 5-10%.

Comment: The cooking time will be less for smaller eggs; this diameter is somewhere between
a “large” and an “extra large” egg. The cooking time will be shorter if the water temperature is kept
higher (e.g., at a roiling boil). T Shortening the cooking time will lead to a softer, and eventually
“soft-boiled” egg. Overcooking the egg will lead to a greenish residue on the yolk, which results
from sulfur in the yolk combining with iron in the white to form harmless ferrous sulfide (REF:
University of Nebraska—Lincoln.) Cooling the cooked egg in ice water helps prevent the green
tinge.

129-A
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V


https://food.unl.edu/how-avoid-green-ring-hard-boiled-egg-yolks

2.25 Prove that temperature cannot oscillate in a 2nd order
lumped capacity system.

I{ e 5§5}0M 5 4o osadiqh/"’(%Y‘C W egn. (5.23) must be

|ma3mar ovr
2 \ \
b:(—-"‘-— )<
1= T: h1§

S @;m-w

6 we coll {TL/T = x, Hew N saas: xezx+ (1% \3“‘—) <0
. R T
ov (x \) k- <

But everything on the left must be positive so this cannot
be! Therefore the system cannot oscillate.

S.26 When the isothermal and adiabatic lines in a 1ux plot are
interchanged, N turns into I and I into N. It follows
that: .

Sinterchanged = I/N = 1/S5.i04naj
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PROBLEM 5.27 A 0.5 cm diameter cylinder at 300°C is suddenly immersed in saturated water
at 1 atm. The water boils and & = 10,000 W/m?K. Find the centerline and surface temperatures
for the cases that follow. Hint: Evaluate Bi in each case before you begin.

a) After after 0.2 s if the cylinder is copper.

b) After after 0.2 s if the cylinder is Nichrome V. [T, ~ 216°C]

c¢) If the cylinder is Nichrome V, obtain the most accurate value of the temperatures after 0.04 s
that you can [T, ~ 259°C]

SOLUTION
a) For pure copper at 300 °C, Table A.1 gives kcopper = 384 W/m-K. Then

hr, _ (10%)(0.0025)
k 384
For this low Biot number, we could use the lumped capacitance solution, but that won’t allow
us to compute the difference between the surface and centerline temperatures. Instead, we
can use the one-term solutions (Section 5.5). The temperatures are found with eqn. (5.42):
T-T,
Ti - Too
For our value of Bi, linear interpolation of
Table 5.2' gives us

Bi,, = = 0.06510

0= =A1f exp(—/leFo)

1, ~03528 A, ~1.016

The value of il is deceptively precise, since
the variation with Bi is not actually linear. In-
stead, we could iteratively solve the equation
for A, in Table 5.1 A

Mdo(Ay) = Birojl(/il)

with an online Bessel function -calcula-
tor, such as https://keisan.casio.com/exec/
system/1180573474. The iteration converges
to A; = 0.3579 with four digit accuracy.” An-
other approach would be to plot the values in
Table 5.2 and with a hand-fitted curve find °s o!os ou o.]:; sio
A, ~ 0.36, as shown at right. The iteration is BL

of course most accurate.’

O

The Fourier number, with & qpper = 11.57 X 107> m?/s, is

-5
Fo — oc_zt _ (1157 x107)(0.2) _ ,
12 (0.0025)2

10lder editions of AHTT give values for Bi = 0.05 and 0.1 only.
2Specifically, Jo(0.3579) = 0.176100 and J;(0.3579) = 0.968232, and Bi, J1/Jo = 0.3579.

3With that value of il, we could also use the equation for A; in Table 5.1 to recalculate, but the result turns out to
match what we already have because the relationship for A; is nearly linear in this range of Bi.
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At the center, we need f; for a cylinder from Table 5.1 for r = 0, which is J;(0). A look-up
shows that J;(0) = 1. At the surface (r = 1)), fi = Jo(4;) = Jp(0.3579) = 0.9682. With
these values,

o - {(1.016)(0.9682) exp[—(0.3579)%(3.70)] = 0.6124 atr=r,

(1.016)(1) exp[—(0.3579)%*(3.70)] = 0.6325 atr =0
Solving for the temperatures, with T = T, + O(T; — T,) and T, = 100°C for saturated
water,
100 + (300 — 100)(0.6124) = 223.5°C ~ 224°C atr =1, Answer
= —_—
100 + (300 — 100)(0.6325) = 226.5°C ~ 227°C atr =0

As expected, the surface and center temperatures are very close (the lumped solution
would make them equal).

b) For Nichrome V at 300°C, Table A.1 gives ky;y = 15 W/m-K. Then
_ hr, _ (10%)(0.0025)

Bi, = = 1.667
iy, n G 66
The Fourier number, with ay;y =~ 0.26 X 107> m?/s, is
-5
Fo — at  (0.26 X 107°)(0.2) — 0.0832

2 (0.0025)2
This Fourier number is too low to use the one-term solutions, and this Biot number is too
high for a lumped solution. Instead, we can use the temperature-response chart, Fig. 5.8.
The author reads:
Oy, = 0.58 0,—o ~ 0.98

Solving for the temperatures,

100 + (300 — 100)(0.58) = 216°C atr =r, Answer

T = -—
100 + (300 — 100)(0.98) = 296°C atr =0

c) For t = 0.04 s, the Fourier number is even lower—0.0166. Let us use the semi-infinite body
solution shown in Fig. 5.16 and given by eqn. (5.53). Here
g Rat  10*4/(0.26 x 10-5)(0.04)
-k 15
From eqn. (5.53), and either Table 5.3 or an online erfc calculator
© = exp [(0.2150)?] erfc(0.2150) = 0.7971

= 0.2150

so that

Answer

T =Ty + (T, — T,,)® = 100 + (300 — 100)(0.7971) = 259°C «————

The center temperature is unchanged at this time.
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S5.28 Flot T(x=0) as a function of time
when the strip heater shown is
turned on. What is g at % = 0.01 m
when T(x=0) = 2000C? strip heater
4000 W/m<

R
K=54n0"

fomeqn (550 T, @)= Tar2 22 [€t s, smWR

= 1S+ 10.49V¢

200 — o
T, ,°C
100 }—
‘ru‘: 200°C w\\u-\
t = 3\0.4 sec,
2 | | |
O
(& 100 200 300
't_\w\c, £$¢c

Then. Goom eqn. (549) :
4. —20:t) _ 4cco-9q - e,rg»

3 o — erf 22 = p9155
ey oKt

<o q_(:( 20.81m,t2300.45) = 333_‘f

3.29 There as many answers to this problem as there are students.
(The most common error students will make is that of touch-
ing items in a room that are not at room temperature —-
rings on fingers, window panes, ice cubes, etc.)
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.30

What is the maximum @ from
the container shown if TS
cannot exceed 30°C

Q=kAT S = 2(30-0)5
An‘\ Qrom Table 5-‘2/ N°-7,

YL/ S\ S 224

Soil, K= 2 W m-LC

1 o

wA

Lm l

4R 4w
= - = 16. élect. equip.
S - R | — N\ -—76—’— Cow\—aiof TS
Zw (1)

Therefore the maximum @ is 2(30)16.76 =

5.3\ A semi-infinite slab of ice at -10°C is exposed to_air at
15°C through a heat transfer coefficient of 10 W/m2-°C,
What is the initial rate of melting in kg of water/m4-s?
What is the asymptotic rate of melting? Describe the
melting process in physical terms. (The latent heat of
fusion of ice hfs = 333,300 J/kg.)

Solution. The surface must first be brought up to the

melting temperature. During this period m =0 kg/m2-5.-ﬁ

melt
Once the saturation temperature, 0°C, has been reached

at the surface, heat will flow into the interior of the

slab in accordance with equation (5.48) which shows that
g ~ 1/t . Thus, after a long time, that portion of the
heat reaching the interface, which flows to the interior,
becomes negligible. Then a simple energy belance yields:

- - ° = .
h (Tair 0°C) hfs Mhelt
or:

. _ - . - 2— I
moelt — 10(15-0)/333,300 = 0.00045 kg/m =5

One side of a firebrick wall, 10 cm thick, initially at
20°C is exposed to a 1000°C flame through a heat transfer
coefficient of 230 W/m2-°C. How long will it be before
the other side is too hot to touch? (Estimate properties

at 500°C).
Solution. k/hL = 0.15/230(0.1) = 0.00652
Tburn ~ = _ 65-1000 _ 0.954
"T;':‘T;‘ = 20-1000 :
Then from Fig. 5.7, upper left, we get
2
a_12:_ = 0.075, t = % = 13,5903ec
L S.ax10
= 3 hr 5} min-—
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Problem 5.33 A lead bullet travels for 0.5 seconds within a shock wave that heats
the air near the bullet to 300°C. Approximate the bullet as a cylinder 0.8 mm in
diameter. What is its surface temperature at impact if h = 600 W/m2K and if the
bullet was initially at 20°C? What is its center temperature?

Solution The Biot number 600(0.004)/35 = 0.0685, so we can first try the lumped
capacity approximation. See eqn. (1.22):

(Tsic — 300)/(20 — 300) = exp(-t/T), where T = mc/hA
So T = pc(area)/h(circumf.) = 11,373(130)m(0.004)?/hm(0.008) = 4.928 seconds
And (Ts — 300)/(20 — 300) = exp(—0.5/4.928).
So T = 300 - 0.903(280) = 47.0°C

In accordance with the lumped capacity assumption,

47.0°C is also the center temperature.

Now let us see what happens when we use the exact graphical solution, Fig. 5.8:
for Fo = at/r,? = 2.34(107°)(0.5)/0.004? = 0.731 and r/r, = 1, we get:

(Tst — 300)/(20 — 300) = 0.90, S0 T = 48.0°C

Andatr/ro =0, (Ter—300)/(20 —300) = 0.92, & T =42.4°C

We thus have good agreement within the limitations of graph-reading accuracy. It
also appears that the lumped capacity assumption is accurate within around 6
degrees in this situation.
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5.34 A 1oaf of bread as shown,
at 1239C when it is re-

is

moved from and oven and put

to cool on an insulating

0.30m

counter._ k = 0.05 W/m-°C _and
sx10”™7 m</s. h = 10 W/m-°C.
When will the bottom center
reach 60°9C.
. 60-2S _ —_
125-25 O3

:6,0,0,

k!
/‘ rk\\—chen
i ~25°%C
i { |
'—awnhfhw
I S
| ! ] ,//»!‘ (\n:u\a\'\ns)
' - 4

(— T_
—-—-l.ll,m

e

let us quess bimes, caleulate B, , 8,0, , and see
hou) c\os'o o 6.35 we come.

ot T =
Fo: = $ k/hL = 0.00S/L
v X, W= 0,06m .(-o,.,,) , kL2 00%m @‘._.@,
Guesst | Fo kL @] Fa Wik 8, &,6,6,
200wec | 0.5 oco$3z 0.42] 0.03 b3 0951 095 | o.28
4Qo00 |05 ¢+ 03310089 035 09Y | 0.34

It Yooks like about 3900 seconds or lhr and 5 MiN. -ee—
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2.3%9 A lead cube, ©0 cm on each side, is initially at 209C. The
surroundings are suddenly raised to 200°9C and h around the
cube is 272 W/m<-PC. Plot the cube temperature along a line

from the center to the middle of one face, after 20 minutes
have elapsed.

)
- (- v 34 . | _AE 23610 (20469)
Bi "(‘" L/ ~ 212(0.25) 25 5 Ferm 0.25%
= 0.451
Then -
2
® - I-T:o = & (8205, Fozoas, £=0) « @(Biz0.5, Tz 0451, X
\\.-\w - — \ —
(- 200)/-180 0.1%
sSo
T=200 -8 220.70 = 138.3%€ ot x/L = O
T =200 - 88 2<0.67 = [40.95%C at 2L = O.T
T =200 — 88 Lr0.65 = [44.4°% ot </L = 04
T =200 - 88 2x0.55 = [§LS° . xA = 0.b
T =200 - 88 2+0.46 = 159.4°C .t x/L = 0.8
T =200 - 88 2x0.322= |71.8°c abt x/L = V0
200 — O side -\-cu?era*-urc &
o\) N
&)'\
2 \so-
S —— i?
LV}
a.
g Interiov +em?era4-ur< . !
+ 00— Notice Hhat the calculated
_}5' ]30"'*5 (0) vary a bt owin
3 4o the error mherent 10 gm\gwcaclmg.
3 !
0 sopF
¢ 1.O 0.9 0.6 04 0.2
X/
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5.36 A jet of clean water superheated to 150°C issues from a (1/16)in.
diameter sharp-edged orifice into air at 1 atm., moving at 27 m/s.
The coefficient of contraction of the jet is 0.611. Evaporation at
T'Tsat 'begins immediately the outside of the jet. Plot the center-
line temperature of the jet, and T(r/ro=0.6), as functions of
distance from the orifice, up to about 5 m. Neglect any axial
conduction and any dynamic interactions between the jet and the air.

An e,‘@menl’ o" ‘H\e e*'- c.oolsa romma.‘re.l S (-. '\1: \-
wmder o \A) while |+ mov;_]s. ﬂereﬁ we can u.jseaFn MS:B wi+h r?:o

oc-t: T=[tr.',"’\‘m\)@ *Tm)oca
t SCLIXM'-'-UFQ'L‘ l o= vz l @Q ,@(%20&) @@. @(f‘,;:o,(.)
0.0\ .21 ©.0\20 Loo 0. 99 /1S50°C 148 °C
0.l 2.1 O.1201 0.%0 0. 4% | 40 122
0.15] 4..05 0. 120} 0.158| 0.29 129 a5
0.2 | 5.4 O.2401 | 0.42| o0.20 121 o
where r,= ‘z(o.ozs‘{/w)/a.{.n 20.000 3 Yer220mls 5 T Taad =100% ; T; Ty 150100

= 50°C;

(SO

PY und %}-" "20|S-‘wt‘“ﬂd‘

evaluated ot Tn 1279 = 400°K,

C&n*’&'\me -‘»e-»\f
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5.37 A 3 cm thick slab of alumimum (initially at 50°C) is slapped tightly
against a S cm slab of copper (initially at 20°C). The outsides are
both insulated and the contact resistance is negligible. What is the
initial interfacial temperature? Estimate how long the interface will

keep its initial temperature.

In accordance with equation (5.60), we get:

TL "T(_ ~ ka/JOfa
Tu=Te kMo, + &, /=

T;-Zo - 237/J 9.61(10Y %
$0-20 392 /Mlis1n6 S +237/4[5.61 007"

——

= 0.39

The solutom s V. = '31;8G.°C_ —

ornd this will be valid s lova ws the slabs b ehave
as ‘Htou ’H«j weyrg Sésni— W\a/\m*—c réaons , This lef\

be as \ma as j >3.65  (Sce eqn. ( 45))
T
= 2 305§ = F=—=— ; 1<0.703
§% e P93 Pnwae

3.45= jw: 0.03 b < 1622 sec.

e ———— J
\I 11,57 6oy St

The S)lor&er 43 ‘}1\2- ‘s—wo 's-ume_s Ancé-zules
Wow lowg b will deke +ha L\rs-s-

msula bl wall o be Lelb. lmseq -
uenHj Pe mterfoce -\se,MFem,&-um.o-(—
'E = 31.g6°C wl vemain cde"Ml' C«N‘:

0.703sec. -

Ca¥ \eas *}
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$.38 A cylindrical underground gasoline tank, 2m in diameter and 4m long,
is embedded in 10°C soil with k=0.8 W/n-°C and @ = 1.3(10)"% n?/s.
Water at 27°C is injected into the tank to test it for leaks. It is
well-stirred with a submerged, (1/2)kW pup. We observe the water
level in a 10am ID transparent standpipe and measure its rate of rise or
fall. What rate of change of height will occur after one hour if
there is no leakage? Will the level rise or fall? Neglect thermal
expansion and deformation of the tank which should be complete by the
time the tank is filled. (Hint: see eqn. (8.7)

Area = Lmia} + an(A) = 5B.GAm? | V= Tow@Y 4 = 61.02w°

There are two ev\crgn +ramsfees ;- S00Tls ok work Yo the water,

amd - kALY 0.8(50.68)(21- 1b) T
Q= XA8l . = 571 I of heat fom
ot o D0 (3600 S ane water.

Now, using eqn. (8.7),

3
L U U T | t . é_\L = o = D, »
- ?Er\P - 17 ’el?l‘, ; &r = o 006275 (67,02) = 0.01843 7
Pnd
dt | gev _ 556.C (A117)(61.02) _ _45e0s S5
av =7’ "~ T (Fvo-esm) | > ¢
3
%0 AV | AV dT . _ 0.088 4 451,1576m 2 _0.601445 -
at ar At A5,909 3 he
T\neM‘. dh - c}‘(\//f\?-_?) - ~0.00 1445 = -~ 0184 M _ a4 Cm —
dt dt T loyt he he

T‘f\us %e '\'M\( (39 \eak—c\-u_ w)‘% ‘Hwe S'\'A-vw\?nfe_
JV‘OFS at The vather sub stanhal rate 8. &cmlhn,
The o\ro? s the result ot Permal contraction.
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5.39 A 47°C copper cylinder, 3 cm in diameter, is suddenly immersed horizon-
tally in water at 27°C. Plot T, as a function of time if 3 0.76 wm/s®
= [2.733+10.448(aT°C) /62 W/mz °C. (Do it mmerically if you can-
not integrate the resulting equation analytically.)

Iv nnscase . d A (Teyl - -Tw) hA o (LgTe) o~ S0 40T
A

dt pev 4A'r at
atT
so: 9_913_6____1!»3%0_0237-: DT = 236,12 d AT -
v, ALr (2173 +d0, 448 AT¥) ZDAT(° 2006 + ATH)R
\_,—.‘,‘*—-—-—)
40 [_. m‘\—cﬁm.w\ = L
AT T ,Sl 'I()BT £ sec
20 3.4 ()
L) 3. 132
— 3ol b 432 1544
N 14 5.3 24.34
> 12 ¢S 36.44
~ 10 129 54,44
H 8 1.9 72,64
20 - (A 19,20 97.3L
- 4 s® 3.4
] 3 6w 14
[ 4
)
Y 0 .
£ _—— Area behoeen 20 % 4°C.
H (a¥ Zsec/4e1n s@ua&)
15 24164 Sec
Oc“S‘ \ ///J

b lo AToC. 0
Then: 41
-rc‘al °C
37—
(=214a7)
{ | A |
270 [ so 15 oo n.lS" 15‘!)
1 sec
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5.40 The mechanical engineers at the University of Utah end Spring semester by
roasting a pig and having a picnic. The pig is roughly cylindrical and
about 26 cm in diameter. It is roasted over a pnropane flame, whose products
have properties similar to those of air, at 280°C. The hot gas flows
across the pig at about 2 m/s. If the meat is cooked when it reaches 95°C,
and if it is to be served at 2:00 P.M., what time should cooking commence?
Assume Bi to be large, but note Problem 7.40. The pig is initially at
25°C.

T ths case, ©=22220_ 5925 gi'=0, so fum Fig 5§ we

2S5 -280
read: §,=0.13
ustng o for beel we qet: o.132
2 CJL t-= Fo*" O)3W= 6 274sec

So the P'a muet be cooked b 44 hes . CDOL-\HA should bcsm at

aboutr 9:30AM 1w the mMornring | g
" ' A' T4 Bi 1S not large, This W)\ be low,
=

5.41 People from cold Northern climates know not to grasp metal with their bare
hands in subzero weather. A very slightly frosted piece of, say, cast iron
will stick to your hand like glue in, say, -20°C weather, and you can tear off
patches of skin. Explain this quantitatively.

Equation (5.60) tells us what to expect for the interfacial
temperature when we touch ice. (—‘a\{e \e_b’dﬂ‘: kl«uo s orbvds':: “bco; )

Tsgem (29 _ 0.6 /{iFsto
37- (-20) 2. 25/J11S(ey © + 18507

T]nuS/ o imme diate Contack ‘Hw 1ce /ar QCBJQ wil] melt to wale
/ve-cJ q,wc,k\j because s ts ‘H«\m,) Thew

= 0,473  so T = 1°C

(20 2.115 /s tioye - o
S(’t ) - /‘-\.Ll) = 0.128 5o \s&:_\—]'l‘ C
o -(-20) S2/iate® + 2068

ey

’\v\us ‘H‘le \rona wnll \W\weall‘w‘e) PCCNCR 'Hn( wa-\'fv, [au.SMj
+» 3\(;: ao'w hawd H  twe mM
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5.42

A 4 om dia.No. 304 stainleses cteel! rod has a very small hole down

The hole is clogged with wax that has a melting point of 60°C.
The rod is at 20°C.

its center.

In an attempt to free the hole, a workman swirls the
end of the rod —~ and about a meter of its length -~ in a tank of water
at 80°C. 1If h is 688 W/m3:C° on both the end and the sides of the rod,

plot the depth of the melt front as a function of time, up to, say, 4 cm.

®(r:0,x)= @ (x) - ®(r-0)
s..e\?,..‘-.&g c‘i"

w:. O.66"7

A"' MeH' -@m& @ =

20-%06
-1
TL\Q f‘OC\: BL = 1‘ - 13.8 = .00 - . ot _ O,000004, _
hio (938(0.02)~ | / ‘_‘; rol.- * 0.0t t=o0,01t
-1
Tha sem-inf. reqiom: /$'= hork | cepl(0000008), _ o oeay
Kkt 15.9%
= i - C8e , _
Thew BG=hel = coSx = 42.3Lx
from Fiq 5.8 _0.6e1| 5 ¥'0~F(3.S.\L XU;)
£ () | Foeu @w'?‘i.*o‘) Osem " B, [Bm0003%a%| A3 |- 55,
15 | o.\S 0.94 O. 11 ofL-scale, MW has net beaun
20| o.20 | 098 6.176 0.0 0.20 |0.804
30i0.30| 0.79 0. 844 6 .3o e.56 0.011\1
3210.32}| 0.73 0-.-9213 .32 o .21 0.011%
34/0.3%] 0. S 0. 932 o.‘_::_: ~::: g.:go‘
2| 0.3 | 0.9 o, %% o. . .
. a okl-scel\e. Molk \scomplete
4ol 0.40] 0.c40 - ~ foran x':?.
s } the melt frret
-“é MC\‘\'H_" Be ins »‘x’wth IS %oc,s Yo X=00.
w é‘ 20 sec a“'hr 1_'uu¢k,
:'; 13 Betwee.n 36 '}40 sec.ofler O
F usweh  the cenber melds
;?. X every wheere bj conduchon
o ' from the sides, aud Hhe
) melt ot
g Ai“?Pfﬁ'S.
£
2
) | ] J
(o] 10 20 30 40
sec
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5.43 A cylindrical insulator contains a single, very thin, electrical resistor
wire that runs along a line halfway between the center and the outside. The
wire liberates 480 W/m. The thermal conductivity of the insulation is
3 W/m-°C, and the outside perimeter is held at 20°C. Develop a flux plot
for the cross section, considering carefully how the field should look in
the neighborhood of the point through which the wire passes. Evaluate the

temperature at the center of the insulation.

Twe wive emits head ¢ uelly
all direchions . Therefvre we sed
uyp 16 adiabatic lines -- & on one
summetrical side - - all convern g

| uire 2 0 e P eg{uai &Mg\cs (22.6°) on the wire,

There are awn Infimite numbes J‘-
|Sb‘\"\‘cm5 ) 3065 Yo !n-(\v\r\—\b A.*_
The wire, (A real wire with fiabe

(_CA‘\""‘L Mameler tuonld glleviake Yws Pﬂ.\o\“)
206%

Now 1§ e voire Liberates AQw
Then +hrou3h each square

o

L * KAU | AT==%=F =10°C

[

The center 15 1.85 squares n %mm
the perimetrer~, Thevelpce 1} s

ak
Teonte, = 20 +1.85(10) = 38.8°C —~——
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PrROBLEM 5.44 A long, 10 cm square copper bar is bounded by 260°C gas flows on two oppos-
ing sides. These flows impose heat transfer coefficients of 46 W/m2K. The two intervening sides
are cooled by natural convection to water at 15°C, with a heat transfer coefficient of 525 W/m?K.
What is the heat flow through the block and the temperature at the center of the block? Hint: This
could be a pretty complicated problem, but take the trouble to calculate the Biot numbers for each
side before you begin. What do they tell you? [34.7 °C ]

SOLUTION
Let’s take the advice given in the hint. From Table A.1, the thermal conductivity of [pure] copper
at 400°C is keqpper = 378 W/m-K. Let L = 5 cm. Then

_ hL _ (46)(0.05)

Bigas side — k - 378 = 0.00608
. hL  (525)(0.05)
Biyater side = T = T = 0.0694

The Biot number compares the internal conduction resistance to the external convection resistance.
For both cases, the internal conduction resistance is small relative to the convection resistance. In
addition, the temperature gradients inside the block will be small.

If we neglect the conduction resistance, the remaining resistances form a network as shown:

Rgas Ryater
A
Tgas M T= —— Tyater
Rgas Cu Ryater
AR
Then,
_ 1 _ 1 _ 5 _ 1 _ 1 _ 5
Rgas = E_ = E = 0.02174 K-m*“/W R ier = E— = ﬁ = 0.00190 K-m“/W
gas water

The equivalent resistance of two equal resistances in parallel is easily seen to be one half of either
resistance. Then the network simplifies:

Rgas /2 Rwater/ 2
T

gas Twater
—>

TCu

The total heat flow is
T,..—T 260 — 15 Answer
gas water 5
= = = 20.7 kW/ —
Q Raus/2 + Ryger/2  0.02174/2 + 0.00190/2 o

The nearly uniform temperature of the copper is
TCu = Twater + (Rwater/ 2)(Q)
Answer

=15+ (0.00190/2)(20.7 X 10*3) = 34.7°C —-—
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5.45 Lord Kelvin made an interesting estimate of the age of the
earth in 1864. He assumed the earth originated as a mass of
molten rock at 4144°K (7000°F) and that it has been cooled by
outer space at 09K, ever since. To do this, he assumed that
Bi for the earth is very large, and that cooling has thus far
penetrated only through a relatively thin (one-dimensional)
layer. Using Cock = 1.18 x 1076 m/s2 and the measured sur-
face temperature gradient of the earth, (1/27)°9C/m, find
Kelvin’s value of Earth’s age.

(Kelvin’s result turns out to be much less than the
accepted value of 4 billion years. His calculation fails
because internal heat generation by radioactive decay of the
material in the surface layer causes the surface temperature
gradient to be higher than it would otherwise be.)

Solution. Since we take the problem to be unidimensional
and since, with a large Bi, we may approximate the earth’s
surface as 09K (with respect to 41449K core), we may there-
fore use eqn. (5.48) for the heat flux

T _1/2
q = kg; = k(T - Toerf(nat)"1/2
x=0

where the derivative is given as (1/27)9C/m. Then
2
(Ti - TS) 1

t s — = 27%(4144 - 0)2/%¢1.18 x 10~©)
(1/27)2  Wex

= 3.38 x 1019 seconds = 107 million years e

It is interesting that, though Kelvin used 41449K as the
température of molten rock, he revised this estimate downward
to 14739 in the late 1890’s, giving an even smaller age of
the earth. Further discussion can be found in Carslaw and
Jaeger [1.14] or various geophysics textbooks.
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PROBLEM 5.46 A pure aluminum cylinder, 4 cm diam. by 8 cm long, is initially at 300°C.
It is plunged into a liquid bath at 40°C with h = 500 W/m?K. Calculate the hottest and coldest
temperatures in the cylinder after one minute. Compare these results with the lumped capacity
calculation, and discuss the comparison.

SOLUTION

We begin by looking up the thermal properties and computing the Biot and Fourier numbers.
From Table A.1, for pure aluminum at 300°C, k = 234 W/m-K; at 20°C, @ = 9.61 X 107> m?/s.
The conductivity does not vary much with T in this range. Then:

h .02
Bi”o = % = %3()20) = 0.04274
at  (9.61 X 107°)(60)
Oro = 12 (0.02)2

The Biot number is certainly small enough for a lumped capacity solution. The Fourier number
is very large (> 1); for a higher Biot number (> 0.2 or so) this would imply that steady state had
been reached. However, for a very low Bi, that need not be the case.

Let us start with the lumped capacity solution. The lumped capacity solution requires us to
compute the time constant. With the density and heat capacity of aluminum, p = 2707 kg/m3,

¢ = 905 J/kg-K
_pcV (2707)(905)(0.08)7(0.02)? 3920
A (500)[27(0.02)(0.08) + 27(0.02)2] T
Then, with eqn. (1.22),
T - Too —t/T —60/39.20
— = = 20 = 0.2162
T =T, e e 0.216
Answer

T = 40 + (300 — 40)(0.2162) = 96.20 °C «——

The cylinder has clearly not finished cooling.
Because the cylinder has a finite length, a solution that is not lumped requires a product solution,
i.e., Fig. 5.27a with the product expression eqn (5.70b):

T(r,z,t)—T, . .
®ﬁnite cyl. = T.—T = = ®inf‘ slab(Z/L’ FOS, Bls) X ®inf. cyl(r/ro’ FOC, Blc)
l (o]
For the slab component, of thickness 2L = 8 cm:

hL _ (500)(0.04)
k 234

-5
= 0.08547 Foy = o _ (961 x 107)(60) = 3.604

Bi, = —
'L 2 (0.04)2

The highest temperature is in the center, at (r,z) = (0,0). The lowest is on either outside corner,
at (r,z) = (r,, L).
For the slab component, we can read the needed values from Fig. 5.7:

Out (0, 3.604,0.08547) =~ 0.75  ©,¢ qun(1, 3.604,0.08547) =~ 0.70

The temperature response charts for the cylinder do not extend to such high Fo; our only recourse
is to use the one-term solution. To obtain f; and A;, one approach is to make an approximation by
interpolating the values in Table 5.2 (by linear interpolation, or more accurately, by plotting some
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of data in the table and hand-fitting a curve through it). A more accurate approach is to use the
equations in Table 5.1 with an online Bessel function calculator' and to find a result iteratively.

For Bi, = 0.04274, an iterative solution leads to A, = 0.2908 (to 4 digit accuracy), and
A; = 1.011. Then, with eqn. (5.42) and Fo, = 14.42:

r=0 fi=J0)=1 Ount. eyt. = A1 fi exp[—(4,)?Fo,, | = 0.2974
r=r fi =J) =09890 Oy ., = A f; exp[—(4)*Fo, | = 0.2941

We can now find Ogige oy1.0 SO that

finite cyl. —

(0.70)(0.2941) = 0.206  at outside corners
{(0.75)(0.2974) = 0.223  at center

Then, with T, — Ty, = (300 — 40) = 260°C,

(0.206)(260) + 40 = 93.6°C  at outside corners Answer
{(0.223)(260) + 40 = 98.0°C  at center

The lumped solution lies between the two values obtained from the multidimensional conduction
solution. This outcome is not surprising.

finite cyl. —

Comment: Our solution for O ., is significantly more accurate than that for @ g If we
instead use the one-term solution for the slab and iterate the equation for 4; in Table 5.1, we find
A1 ~ 0.28825, A; = 1.014, f,(0) = 1, £,(0.28825) = 0.9587, and then

Oint. sian(0, 3.604,0.08547) = A, f; exp[—(4;)?Fo | = 0.7516
Oin. stan(L, 3.604,0.08547) = A, f; exp[—(4;)*For | = 0.7206
The latter value is 3% higher than what the author got in reading the chart. These values result in
(0.7206)(0.2941)(260) + 40 = 95.1°C  at outside corners
finte 51 =) (0.7516)(0.2974)(260) + 40 = 98.1°C  at center

The lumped solution (96.2°C) still lies between these values, but is a bit closer to the outside corners
than to the center.

"Here’s a Bessel function calculator from Casio Computer Co.: https://keisan.casio.com/exec/system/1180573474.
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PrROBLEM 5.47 When Ivan cleaned his freezer, he accidentally put a large can of frozen juice
into the refrigerator. The juice can is 17.8 cm tall and has an 8.9 cm I.D. The can was at —15°C
in the freezer, but the refrigerator is at 4°C. The can now lies on a shelf of widely-spaced plastic
rods, and air circulates freely over it. Thermal interactions with the rods can be ignored. The
effective heat transfer coefficient to the can (for simultaneous convection and thermal radiation) is
8 W/m2K. The can has a 1.0 mm thick cardboard skin with k = 0.2 W/m-K. The frozen juice has
approximately the same physical properties as ice.

a) How important is the cardboard skin to the thermal response of the juice? Justify your answer
quantitatively.

b) If Ivan finds the can in the refrigerator 30 minutes after putting it in, will the juice have begun
to melt?

SOLUTION
a) The thermal resistance of the cardboard is

t _ 0.001

—— =0.005 K-m%/W

Rcardboard = E - 0.2

The thermal resistance from the exterior heat transfer coefficient is

1 1
Ry = ==3= 0.125 K-m?/W

Thus, Reyi/Reardboara = 25 >> 1, and the cardboard’s thermal resistance can be neglected.

b) We may treat the transient conduction problem as the intersection of a cylinder and a slab,
as shown in Fig. 5.27a, using eqn. (5.70b):
0. — T(r,z,t) — Ty,
can — rIvl _ Too
From Table A.2, ice has k = 2.215 W/m-K and o = 1.15 X 10~®m?/s. After 30 minutes, the
Fourier numbers of the slab and cylinder are:

at _ 1.15x 107%(30)(60)

= ®Slab(Z/L, F059 Bls) X ®Cyl(r/r03 FOC’ Blc)

Fog = = (017827 = 0.261
at  1.15 X 107%(30)(60)
%= 2 (0.089/2)?
The Biot numbers are:
hL  (8)(0.178/2
h 8)(0.089/2
Bi, = % - % = 0.1607

Melting will occur first at the corners of the can, r = r, and z/L = £1.

These Fourier numbers are large enough for us to use either the one-term solutions or the
charts Figs. 5.7 and 5.8. (Note that the charts can only be read to an accuracy of about +5%,
so that different students may come up with slightly different numbers.) With the charts, the
author reads:

®slab asd 084
Oy = 0.78
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so that
O.an = (0.84)(0.78) = 0.655

Then, with T; — T, = =14 — 4 = —18°C,
T.,, = (0.655)(—18) + 4 = —7.8°C

Answer
Thus, the juice has not started melting when Ivan finds it. —«———

Comment 1: We could get better accuracy using the one-term solutions, but the can is a long
way from melting. A 5-10% shift in ®,, will not change the answer.

Comment 2: These Biot numbers are almost low enough to use a lumped capacitance solution.
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PrROBLEM 5.48 A cleaning crew accidentally switches off the heating system in a warehouse
one Friday night during the winter, just ahead of the holidays. When the staff return two weeks later,
the warehouse is quite cold. In some sections, moisture that condensed has formed a layer of ice 1
to 2 mm thick on the concrete floor. The concrete floor is 25 cm thick and sits on compacted earth.
Both the slab and the ground below it are now at 20°F. The building operator turns on the heating
system, quickly warming the air to 60°F. If the heat transfer coefficient between the air and the floor
is 15 W/m?K, how long will it take for the ice to start melting? Take Q..,.; = 7.0 X 107 m?/s and
keoner = 1.4 W/m-K, and make justifiable approximations as appropriate.

SoLUTION  We have transient heat conduction from the air to the ice, concrete, and possibly
the ground below the concrete.

The ice layer is very thin in comparison to the concrete, so that it will contribute very little heat
capacitance or thermal resistance. To check the size of the ice resistance, with k;., = 2.215 W/m-K,

we have ; 0.002
R.=—-—~—=-=0. K-m?
e = T ® 3572 0.000903 K-m3/W
1 1
R = ==15- 0.0667 K-m?/W

so that R,,/R;.. ~ 74 > 1. We can neglect the thermal resistance of the ice. Neglecting the heat
capacitance of the thin ice layer as well, we may simply treat the slab as if the ice were not present.
Because the concrete layer is thick and not highly conductive, we may attempt to treat it as a
semi-infinite body. We will need to check that the temperature change has not reached the bottom
of the concrete when the concrete surface reaches the melting temperature.
We can use Fig. 5.16 or eqn. (5.53). At the slab surface, { = 0. We seek the time at which the
dimensionless temperature is
T-T, 32-060
T,— Ty 20—60
From Fig. 5.16, this value corresponds to 8 ~ 0.35. Since the chart is not easy to ready up in that
corner, we can check the result with Table 5.3 and eqn. (5.53):

© = exp [(0.35)*] erfc(0.35) = 0.703
which is close enough (within 0.4%). Then, from 8 = E\/'oz / k

2
0.35)(1.4 1 Answ
= [( (1)5() ) TOx 107 = 1524 sec = 25.4 min  ——

Now, let’s check whether the concrete remains a semi-infinite body after 25 minutes. We need
® for

0= = 0.700

pe = % = —(15)1(325) = 2.68

Figure 5.16 shows that ® ~ 1, so that the bottom of the slab remains at the initial temperature. The
slab can indeed be modeled as a semi-infinite body.
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PROBLEM 5.49 A thick wooden wall, initially at 25°C, is made of fir. It is suddenly exposed
to flames at 800°C. If the effective heat transfer coefficient for convection and radiation between
the wall and the flames is 80 W/m?K, how long will it take the wooden wall to reach an assumed
ignition temperature of 430°C?

SoLUTION The maximum temperature of the wood is at the surface, x = 0. The wall thickness
is not given, so we will treat it as semi-infinite and then check to see whether that assumption is
reasonable. _

Referring to eqn. (5.53) or Fig. 5.16, { = x/4/at = 0 while 8 = hy/ at/k is unknown until ¢ is
found. We seek the value of ¢ at which the surface reaches 430°C, so that

_ Tign — T 430 — 800
- T,—T,  20—800
Reading from Fig. 5.16, we find 8 ~ 0.8.
To get better accuracy, we could use eqn. (5.53):

= 0.4774

0
© = erf0+ exp(B?) erfe(6)

Then, using Table 5.3 for erfc, we could linearly interpolate a bit:

Guess 8 erfc(B) exp(B8?) erfc(B)
0.8 0.25790 0.48740

0.9 0.20309 0.45653
0.85  0.23050 0.47472
0.84  0.23598 0.47787

At this point, we are exceeding the accuracy of the interpolation. An online erfc calculator gives
erfc(0.84) = 0.23486 and, with more iteration, erfc(0.8346) = 0.23788 resulting in ® = 0.4774.

From either value, with k = 0.12 W/m-K, o = 7.4 X 1078 and h = 80 W/m?K,
1 (ﬁk)z 21.5sec B =0.84 Answer
t=——| = PR
a\ h 21.2sec 3 =0.8346

How thick must the wall be for our semi-infinite approximation to apply? Looking at Fig. 5.16, we

see that that the temperature remains at T; (® = 1) for 8¢ = hx/k < 3, or for x < 3(0.12)/(80) =
4.5 mm. Our approximation is valid for a wall that is at least this thick.

143-F
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



PrROBLEM 5.50 Cold butter does not spread as well as warm butter. A small tub of whipped
butter bears a label suggesting that, before use, it be allowed to warm up in room air for 30 minutes
after being removed from the refrigerator. The tub has a diameter of 9.1 cm with a height of 5.6 cm,
and the properties of whipped butter are: k = 0.125 W/m-K, ¢, = 2520 J/kg-K, and p = 620 kg/m?3.
Assume that the tub’s plastic walls offer negligible thermal resistance, that i = 10 W/m?K outside
the tub. Ignore heat gained from the countertop below the tub. If the refrigerator temperature was
5°C and the tub has warmed for 30 minutes in a room at 20°C, find: the temperature in the center of
the butter tub, the temperature around the edge of the top surface of the butter, and the total energy
(in J) absorbed by the butter tub.

SOLUTION

We can model the tub of butter as shown in Fig. 5.27a: the intersection of a cylinder of diameter
9.1 cm with a slab of thickness 2L = 2(5.6) = 11.2 cm. The slab thickness is twice the height of
the tub because the bottom of the tub is presumed to be adiabatic, which means that the bottom acts
as the centerplane of the slab for superposition purposes. We can use coordinates (x,r) as shown
in the figure below.

With eqn. (5.70b):

T(r,z,t) — Ty

®tub = 711 _ Too

= Oy(§, Fog, Big) X ®Cy1(P, Fo,, Bi.)

The thermal diffusivity of the whipped butter is o = (0.125) /[(620)(2520)] = 8.00 x 108 m?%/s.
After 30 minutes, the Fourier numbers of the slab and cylinder are:

_at _ 8.00 x 107%(30)(60)

Fo. = — = = 0.04592
ST (0.056)2
t 8.00x 1078(30)(60
Foo = & = =2 ( 2)( ) — 0.06956
% (0.0455)
The Biot numbers are:
. hL _ (10)(0.056)
Bi, = = = o1 = 4.48
143-G
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_ hr, _ (10)(0.0455)

~ k0125

These Fourier numbers are too small for us to use the one-term solutions. We can use the charts,

Figs. 5.7 and 5.8. (Note that the charts can only be read to an accuracy of about 5%, so that
different students may come up with slightly different numbers.) The author reads:
O =~ 0.46 at top, x/L =1 Ogap = 0.95 in middle, x/L = 0.5

Oy =~ 0.40 at edge, r/r, = 1 Oy =~ 0.97 at center, r/r, = 0

Bi, 3.64

so that
_ {(0.46)(0.4) = 0.184 at top outside edge

"> )(0.95)(0.97) = 0.92  at center
Then, with T, — T, = (5 — 20) = —15°C,

(0.184)(—15) + 20 = 17.2°C  at top outside edge Answer

—

b {(0.92)(—15) +20=62°C  atcenter
To find the heat gain, we may use eqn. (5.72c):
Dup = Pyjap + Peyi(1 — Pyia)
The respective values may be read from Fig. 5.10:
d,., ~ 0.10
@, ~0.28

SO
@, = 0.10 + (0.28)(1 — 0.1) = 0.352

The heat gain is

t
- f Qdt = —pc,V(T; — Toy) ®
0

= —(620)(2520)[7(0.0455)2(0.056)](5 — 20)(0.352)

Answer
=+3.00k] «—
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PROBLEM 5.51 A two-dimensional, 90° annular sector has an adiabatic inner arc, r = 1, and
an adiabatic outer arc, r = r,. The flat surface along 6 = 0 is isothermal at T;, and the flat surface
along 6 = 7r/2 is isothermal at T,. Show that the shape factor is S = (2/7) In(7, /).

SoLuTION  Cylindrical coordinates are appropriate for this configuration. The shape factor
applies to steady-state heat conduction without heat generation. Further, our problem does not
depend on the axial coordinate, z. The heat equation, eqn. (2.11) with eqn (2.13), can be simplified:

0

14 ld(dT 1 82T az"ﬂ%/ )
at _ ror 6r 2662

We may use separation of variables, assuming that T'(r, 8) = R(r)©(6):

.9 d ( 6T) T
or\ or 062
rd( dR\ _ 1d°0
EE(FW) T 0de2

Since the left-hand side depends on r only and the right-hand side on 6 only, the only way for them
to be equal is if each take the same constant value. Call that value m?:

rd(dR) 5 1d%0
m- =

Rdr\ dr @ de?
We can separate this into two ordinary differential equations:
d( dR\ m?
a( a) ~ 5 R=0
d’*e
W +mBO =0

Our situation looks pretty complicated! For m # 0, the first equation leads to Bessel functions
and the second produces signs and cosines. We’d get a so-called Fourier-Bessel series. But we
must also allow for the case m = 0. In that case, our equations are:

d( dR
dr( dr) 0
d2

W:(’

We easily find the solutions by integrating each equation twice:
R(r)=Cylnr+C, =0
O6) =C36 +C,y
If we can meet the boundary conditions using only the solution for m = 0, we can simply omit the

solutions for m # 0.
Atr = r; and r = ry, the boundary is adiabatic, so:

oT
ar
which is only possible for C; = 0. Thus, R(r) = Cz is just a constant: this solution is independent of

r! We can take C, = 1 without loss of generality because C, simply multiplies the other unknown
constants.

- @(e) - @(e)f—ol =0
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The boundary conditions at 8 = 0 and 6 = 7/2 yield:
1 1
T(r,0)=00)% =C, =T,  T(r,7/2) = O#/2)05 = Csn/2+Cy =Ty
so Cy, = Ty and C5 = (T, — Ty)(2/7). Collecting all this:
T(,0) = T@only) = (T, = T = +T; =)

To find the shape factor, we need to calculate the heat flow Q from one isothermal side to the
other. The gradient vector in cylindrical coordinates is

5T 1 6T oT

T ==
VT =Grert 15g% + 3%
The heat flux in the 6 direction is then
10T 2
q= k55 = —k(T— T
The total heat flow is found by integrating from r = r; to r = 1, along the line 6 = 0:

) 2. K
Q = —k(TZ Tl) —_— dr = k(Tl TZ)E In 7

i
By definition, eqn. (5.66), Q = SkAT, so the shape factor we seek is:

2 17 Answer
Q Y —

SkAanl

Comment 1: The astute student may recognize at the outset that the temperature distribution
will not depend on r. In that case, the radius derivative in eqn. (*) will also be zero; integration
and application of the boundary conditions will lead quickly to eqn. (**).

Comment 2: In the case of a thin sector (r, = r; + t for t < r;), curvature is unimportant. The
problem could be treated as a straight strip of length (77/2)r. A thermal resistance calculation
would quickly lead to an expression for S.

In addition, for t < 1, In(7,/r;) = In(1 + t/r;) ~ t/r;. Then our result becomes S ~ 2t/(7r;).
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PROBLEM 5.52  Suppose that T (¢) is the time-dependent temperature of the environment
surrounding a convectively-cooled, lumped object.

a) When T, is not constant, show that eqn. (1.19) leads to
(T-To)  dTs

T = 4t
where the time constant 7" is defined as usual.

d
— (T - Tw

b) If the object’s initial temperature is 7;, use either an integrating factor or Laplace transforms
to show that 7'(¢) is

t
T(t) = T (t) + [T = Teo(0) | /T - e_t/Tj es/TdiToo(s) ds
0 h)

SOLUTION
a) From eqn. (1.19) for constant ¢, with T () not constant:
dT

_ d
—hA(T - Ty) = o [pcV(T - Tref)] = mcz

d(T -Ts) N dT
c mc
dt dt
Setting T' = mc / hA and rearranging, we obtain the desired result:

(T-To)  dls
T dt

6]

d
— (T -T,) +
7 )

b) The integrating factor for this first-order o.d.e. is e//T. Multiplying through and using the
product rule, we have

d t/T t/T dTs
= T-T. ] — /T Z2®
dt [ ¢ ="
Next integrate from ¢ = 0 to z:

! dTw
e"T(T = Tow) = [Ti - T (0)] = - J eT =2 gy
0 dS

~t/T and rearranging gives the stated result:

Multiplying through by e

! es/T dTOO

T(t) = Tw(t) + [T = To(0) | /T - e—f/Tj ds

0 ds

ALTERNATE APPROACH: To use Laplace transforms, we first simplify eqn. (1) by defining
y(t) =T - T and f(t) = —dT/dt:

Next, we apply the Laplace transform Z{..}, with Z{y(¢)} =Y (p) and ZL{f(t)} = F(p):

)2} - 20

PY(p) = ¥(0) + 7 ¥ (p) = F(p)

7|
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Solving for Y (p):

1
Y(p) = 1/Ty() +1/TF(p)
Now take the inverse transform, )
_ _ 1 _
TN = 2o O+ 27— F ) @

With a table of Laplace transforms, we find

—1{ 1 } _ T

p+1/T) — —

— =g(1)
=G(p)

and with G(p) and g(t) defined as shown, the last term is just a convolution integral
-1
F t— 1)d
(ArFo)} = 2 GwFE) = [ s-nr0as
Putting all this back into eqn. (2), we find

¥(1) = /T y(0) + J T £ (1) ds
0

and putting back the original variables in place of y and f, we have at length obtained:

! dTs
T (1) = T (1) + [T} = T (0)] /T - e—t/TJ oo/ oo
0 h)

EXTRA CREDIT. State which approach is more straightforward!
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PROBLEM 5.53  Use the equation derived in Problem 5.52b to verify W eqn. (5.14).

SoLuTiON  We have T, (t) = T; + bt. Substituting into the result of Problem 5.52b:

t
T(t) = Tu(t) + [T} — Ty (0)] T — &~1/7 f /L1, 1 bs] ds
0

t
= T+ bt + [Ty — T /T — 0T f e5/Th ds
0

= T; + bt — bTe /T(e!/T — 1)
=T, + bt = bT(1—e7!/T)
which is eqn. (5.14).
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PROBLEM 5.54  Suppose that a thermocouple with an initial temperature T; is placed into an
airflow for which its Bi <« 1 and its time constant is T. Suppose also that the temperature of the
airflow varies harmonically as T, (t) = T; + AT cos (wt).

a) Use the equation derived in Problem 5.52b to find the temperature of the thermocouple,
T.(t), for t > 0. (If you wish, note that the real part of e'*! is Re{e'®!} = coswt and use
complex variables to do the integration.)

b) Approximate your result for t > T. Then determine the value of T (t) for wT < 1 and for
wT > 1. Explain in physical terms the relevance of these limits to the frequency response
of the thermocouple—its ability to follow various frequencies.

c) If the thermocouple has a time constant of T = 0.1 sec, estimate the highest frequency
temperature variation that it will measure accurately.

SOLUTION

a) The integration can be done in several ways. We’ll use complex variables:

t
T(t) = Too(t) + [T; — Tpo (0)] e/ — e_t/Tf eS/T%Too(s) ds
t 0 d
=T (t) — ATe VT — ATe‘t/Tf es/T me{—eim} ds
0 ds
t
=T (t)— ATe t/T — ATe /T %e{f s/ Tiwel®s ds}
0

(1/T+iw)t _
= oo(t)—ATe‘”T—ATe‘t/TERe{iw[e 1]}

1/T + iw

...and now a bunch of algebra...

= To(t) — ATe /T — AT me{iw[(eiwt - e_t/T)(l/T—_iwﬂ}

T2+ w?
=T (t)— ATe VT — %[— sin(cwt) /T + w cos(wt) — we™"/T|
= T_(t)— ATe YT — (Cﬂ,)Af];H[cos(cot) — sin(wt)/(@T) — /7]
1 AT .
= Too(t) + ATe_t/TI:(CO’I‘)TH - ] - m[COS(CDt) - SlIl(CUt)/(C()T)]
2
~ T (1) - ATe‘t/T[ﬁ] _ ATl(J:"(—?T)Z[cos(cot) — sin(wt)/(@T)]

We could stop here...or we can use a trig identity to combine the sine and cosine:
Acos¢p —Bsing = Ccos(¢p + a)
for C?> = A? + B? and tan(B/A) = a. With A = 1 and B = 1/(«T), a = tan~!(1/wT) and:

T(t) = Too(t) — ATe—t/T[ﬁ] AT % st

Measurement error
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b) The second term on the right-hand side of eqn. (*) represents the transient response of the
thermocouple, which tends to zero for t > T. We are left with the steady response to the
oscillating air temperature:

T() = To(t) — AT, | % cos(wt + ) ()

For low frequencies (with a period much longer than the time constant of the thermocouple),
wT < 1 and o — 7/2. The result reduces to

T(t) ~ To(1)
In this range of frequencies, the thermocouple measures the air temperature accurately.
For high frequencies (with a period much shorter than the time constant of the thermo-
couple), wT > 1 and o — 0. The result becomes
T(t) » T (t) — AT cos(wt) = T;
For these very high frequencies, the air temperature fluctuates too rapidly for the thermocou-
ple to follow, and the measured temperature is simply the average air temperature.

c) To measure accurately, we’d like the last term in eqn. (**) to be small. For no more than
a 1% error, we would need wT < 0.01. Therefore, we need frequencies low enough that
@ < 0.01/T, and with w = 27 f and T = 0.1 sec, this leads to

f< 0.01
= 27(0.1)

This frequency corresponds to a maximum period of air temperature change of about 63 sec.

= 0.0159 Hz

Comment 1: For measurements of fluctuating air temperature in turbulent flow, much higher
frequency response is needed, generally in the range of 1 kHz or more. Very short sensor time
constants are required, and these can be obtained using micrometer diameter platinum wires. SEE:
J. Haugdahl and J.H. Lienhard V, “A low-cost, high-performance DC cold-wire bridge,” J. Phys.
E: Sci. Instr., Vol. 21, 1988, pp.167-170, doi:10.1088/0022-3735/21/2/008. (PDF file)

Comment 2: The thermocouple is a first-order linear system, and the fluctuating air temperature
provides harmonic forcing. In a system dynamics class, these results might be presented using a
Bode plot for the amplitude response. To find the phase shift (which is not «), the fluctuating part
of T, (t) must be combined with the last term in eqn. (*); this phase shift is 0° at low frequency,
increasing to a 90° phase lag at high frequency.
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PROBLEM 5.55 A particular tungsten lamp filament has a diameter of 100 um and sits inside
a glass bulb filled with inert gas. The effective heat transfer coefficient for convection and radiation
is 750 W/m-K and the electrical current is at 60 Hz. How much does the filament’s surface
temperature fluctuate if the gas temperature is 200°C and the average wire temperature is 2900°C?

SOLUTION

We may refer to Fig. 5.12 to find the answer once we calculate Bi and 3. The tungsten wire
is at a higher temperature than the data in Table A.1: k = 114 W/m-K (at 1000°C) and a =
6.92 % 107> m?/s (at 20°C). We can do better by using the literature [1]. At3200 K, k = 91 W/m-K.
If we take pc,, to be only weakly temperature dependent, we can estimate a by adjusting the 20°C

value k = 178 W/m-K to the 3200 K value: a ~ 6.92 X 107°(91/178) = 3.54 X 107> m?/s.
hs _ (750)(50 X 107°)

i = — —4
Bi = B o1 =412 X 10
wd?  2m(60)(50 X 107°)?
4 a 3.54 X 10->
With these values, we can read from Fig. 5.12:
Tmax - Tave ~ 0.02
Tave - Too
so that
Answer

Toux ~ (0.02)(2900 — 200) + 2900 = 2954 °C «———

References. [1] R.W. Powell, C.Y. Ho, and P.E. Liley, Thermal conductivity of selected materials.
Washington, D.C., U.S. Dept. Commerce, National Bureau of Standards, 1966, Figure 13.
https://permanent.fdlp.gov/LPS112783/NSRDS-NBS-8.pdf
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PROBLEM 5.56 The consider the parameter ¥ in eqn. (5.41).

a) If the timescale for heat to diffuse a distance & is §%/a, explain the physical significance of ¥
and the consequence of large or small values of 7.

b) Show that the timescale for the thermal response of a wire of radius § with Bi <« 1 is
pcpd / (ZE). Then explain the meaning of the new parameter ¢ = pc,wd / (471%).

c) When Bi <« 1, is ¢ or 3 a more relevant parameter?

SOLUTION
a) The definition of ¢ is P = w&?/a. Physically, ¢ is a ratio of timescales:
5%/a timescale for heat diffusion over distance &
p=——=21 . —— .
1/w period of oscillation of heat generation

with w = 27 f. When 9 < 1, the heating power oscillates on a timescale much greater than
the time required for heat to diffuse over §, with the result that the surface temperature of the
object will not vary much. When % > 1, heat diffuses to the surface much faster than the
heat power varies, so that the surface temperature will change as the power fluctuates.

b) For low Biot number, the timescale for an object’s temperature change is simply the lumped
capacitance time constant. From eqn (1.23)

rom(2)

For a cylindrical wire of radius &, per unit length, A = 276 and m = pmd2. Substituting
these values

e
2h
The proposed parameter ¢ = pc,w8 /(47h), with f = w/27 = 1/period, has this physical

meaning: _
_ pcpb/(2h) _ lumped capacitance time scale
- 2mlw period of oscillation

c) When Bi < 1, ¢ is clearly the more relevant parameter. In this limit, temperature gradients
within the wire are negligible.
From Figs. 5.11 and 5.12, we see that 1 alone predicts the temperature deviation for
Bi > 1. We expect that the deviation would be independent of Bi in the lumped limit, for
Bi < 1, but that behavior does not appear when 1 is used as a parameter. The curves would
need to be replotted in terms of ¢ to show independence from Bi at low Bi.
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PROBLEM 5.57 Repeat the calculations of Example 5.2 using the one-term solutions. Discuss
the differences between your solution and the numbers in the example. Which provides greater
accuracy?

SOLUTION
The one-term equations that we need are eqns. (5.42) and (5.43):
© = A, fi(r/r,) exp(—/ileo) ®=1-D exp(—/TZlFo)
From Example. 5.2, Bi, = 0.498. Referring to Table 5.2, we read the values for Bi, = 0.50:
1, =1.16556 A; =1.1441 D; = 0.9960
At the center of the apples, r/r, = 0. For f;(0) we may refer to Table 5.1, noting that

1
lim —sinx =1
x—0 X

so that f,(0) = 1.
After 1 hr, from Example 5.2, Fo, = 0.208, So

© = (1.1441)(1) exp|—(1.16556)%(0.208)| = 0.8625
which is 2.7% greater than the value found in Example 5.2. From the definition of ®

Answer

Teenter = (0.8625)(30 — 5)°C 4+ 5°C = 26.6°C ——
When the centers reach 10°C, from Example 5.2, ©® = 0.20, so
0.20 = (1.1441)(1) exp[—(1.16556)*Fo,. |

which can be solved for
Foro =1.284 ~ 1.28

which is 1.4% less than the value found in Example 5.2, so that

A
[ 1.28(997.6())(461(1)20)(0.0025) 22,1295 = 6 hr 9 min nswer

With Fo, = 1.284, we find
® =1 —(0.9960) exp[—(1.16556)%(1.284)] = 0.8259

We can use this value of ® to repeat the calculation in Example 5.2:

Answer

t
4
12 f Qdt = 12(997.6)(4180)(gn(0.05)3>(25)(0.8259) 541K e
0
This value is about 0.7% greater than was calculated in Example 5.2.

Accuracy: The charts can be read to a precision of only about £5% (although the numerical
calculations made when plotting the charts were very precise.) The one-term solutions allow many
digits to be computed, but one must also consider the approximation made in reducing the Fourier
series solutions to a single term. As noted on page 216 of the next, the one-term solution for a
sphere is accurate to better than 0.1% for Fo > 0.28; that means that the answers for the last two
questions are much more accurate with the one-term series than the chart solution. For the first
answer (with Fo = 0.20), the one-term solution will be somewhat less accurate (since Fo < 0.28),
but likely still much more accurate that reading the chart.

150-A
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



PROBLEM 5.58 The lumped-capacity solution, eqn. (1.22) depends on t/T. (a) Write t/T in
terms of Bi and Fo for a slab, a cylinder, and a sphere [slab: ¢/T = Bi;Fo;]. (b) For a sphere
with Fo = 1,2, and 5, plot the lumped-capacity solution as a function of Bi on semilogarithmic
coordinates. How do these curves compare to those in Fig. 5.97

SOLUTION
a) For a very large slab of thickness L and area A (neglecting edges)

1
(A _ Lk
T pocLA  pcL I? k gea
For a very long cylinder of radius r, and length L (neglecting ends)

= FOLBiL

1

t  thQmr,L)  2th thr, k

L (7”;3 ) _ = 2% 20 ¥ _ »Fo, Bi,

T ocmigL ocr, 2 k pea oo

For a sphere of radius r,
1

t th(4nrg 3th thr, k
t_ ( 7'%)3 _ :3“_2ﬁ = 3Fo, Bi,
T pcr(4/3)mr; — pPCh 12 k pca oo

b) The lumped solution is plotted with solid curves in the figure below. The comparison can
be made in various ways. In the plot, the curves from Fig. 5.9 are shown in dashed lines for
r/r, = 0 and in dotted lines for r/r, = 1. The results from Fig. 5.9 and the lumped solution
are similar in all cases, but almost identical for r/r, = 1. The disagreement is greater for
higher Bi and lower Fo, as expected, and the most noticeably different case is for for r/r, = 0
(the center) when Fo = 1 and Bi > 0.1.

The reason that the curves are generally similar is that the lumped solution assumes a
uniform temperature through the whole sphere, a condition that best applies for small Biot
and large Fourier number.

1.0 ——— ] ‘ 1 |
S~ S, ot
g| 8 \\ S F0:—2
il l_I \\ =y fo
: Fo=5 "\, 2% 1
[l - 05 N N .
I \
O} o e, N
N Y } T
00 N G'QG-L;L_LJ
0.01 0.1 1

Biot number, Bi

Comment: 1If the curves for Fo = 0.1 are plotted, no similarity at all is observed (see figure
on next page). For small Fourier numbers, the temperature at the surface and the center are
very different unless Bi < 0.1.
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151-B
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



PROBLEM 5.59  Use the lumped-capacity solution to derive an equation for the heat removal,
®, as a function of ¢t. Then put this equation in terms of Fo and Bi for a cylinder. Plot the result on
semilogarithmic coordinates as a function of Bi for Fo = 25, 10, 5, and 2. Compare these curves
to Fig. 5.10b.

SOLUTION
By definition, eqn. (5.37),

t
| qa
0

" PeV(T; — Too)
For a lumped object, with eqn. (1.22),
Q = hA[T(!) - Too] = hA(T; — Teo) exp(~t/T)

so that, with T = pcV /hA,
t

1
P = PR i exp(—t/T)dt = T T[l — exp(—t/T)] =1—exp(—t/T)
For a cylinder that is very long (so that we neglect the end surfaces),

1
t thQ2mar,l) 2th thr, k
t_ thQapl) _ — 2% Mo % _ 5Fo, Bi,
T pC7TI"02L ocr, r02 k (o4 o 7o
Thus:

Answer
® =1-exp(—t/T) =1-exp(-2Bi, Fo, ) «———

This equation is plotted below using solid curves. The curves from Fig. 5.10b are shown as
dotted curves. The agreement is excellent overall. For smaller Fo and higher Bi, some differences
begin to appear. When the Biot number is higher, the internal thermal resistance is no longer
negligible (the internal temperature gradients increase), so that the lumped model overestimates
the amount of heat removal at a given time (at a given Fo).

1.0 P P e cEil
o ERy ey ey
% | / / ',¢
e /l/ / 4 A~
K o~ Fo = 25 10 Vs 5 2/
0.5
3 yd :
e o // / / Fo — a_
I P / // 4// r%
8 —
0.0 =
0.001 0.01 0.1 1 5

Biot number, Bi = hr,/k

Comment: The agreement will be worse for small Fo. As seen in Fig. 5.10b, Fourier numbers
less than 1 may never reach ® ~ 1 — or even come close to ® = 1. The lumped solution will
always reach ® ~ 1 if Bi is large enough, but that is not accurate for high Bi.
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Overall, the one-term calculations appear to have improved the accuracy by 1-3%. The reader
should keep in mind that the model used for cooling the apples is far more approximate: apples are
not spheres, the heat transfer coefficient may be uncertain by £20% (or more), and so on.
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PROBLEM 5.60 Write down the one-term solutions for ® for a slab with Bi = {0.01,
0.05,0.1, 0.5, 1}. Compare these to the corresponding lumped capacity equation (see Problem 5.58).

Ostrogorsky [5.8] has shown that /Tl ~ 4/m - Bi for Bi < 0.1, where m = 1 for a slab, 2 for a
cylinder, and 3 for a sphere. How does that formula compare to your results?

SOLUTION

In Problem 5.58, we found
t
T
for a slab, and so the lumped solution may be written

© = exp(—Bi;For)
The one-term equation is eqn. (5.42)
© = A fy(r/1,) exp(~FFoy)

= BiLFOL

with f; from Table 5.1

fi = cos(4,x/L)
The needed values A; and A; may be taken from Table 5.2 as below, where the constants in ® have
been rounded to 3 digits.

Bi;, A A, Q) \/BiL
0.01 0.09983 1.0017 (1.00)cos(0.0998x/L)exp(—0.00997 Fo;) 0.1000
0.05 0.22176 1.0082 (1.01)cos(0.222x/L) exp(—0.0492Fo;)  0.2236
0.10 031105 1.0161 (1.02)cos(0.311x/L) exp(—0.0968 Fo;)  0.3162
0.50 0.65327 1.0701 (1.07)cos(0.653x/L)exp(—0.427 Foy) 0.7071
1.00 0.86033 1.1191 (1.12)c0s(0.860x/L)exp(—0.740For) 1.000

The coefficient of Foy, in the expression for © is very close to Biy, for Bi; < 0.1 (within 3.2% or
less). The cosine factor can be studied with a Taylor expansion of cos z:

2

osz=1——+---
cos 2+

where z = A;x/L. For Bi; < 0.1, cos(4;x/L) ~ 1 with an error of 4.8% or or less. Thus, we
conclude that the one-term solution approximates the lumped-capacity result well for Bi; < 0.1.
This finding indicates that the one-term solution is acceptable for very low Biot number at any
value of the Fourier number.
In every case, Ostrogorsky’s formula, \/B_iL, is within 14% or better of 4;. For Bi; < 0.1,
Ostrogorsky’s formula is within 1.7%.
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PROBLEM 5.61 When the one-term solution, eqn. (5.42), is plotted on semilogarithmic co-
ordinates as log ® versus Fo for fixed values of Bi and position, what is the shape of the curve
obtained? Make such a plot for a sphere with Bi = {0.5,1, 2, 5,10} at r/r, = 1 for 0.2 < Fo < 1.5.

SoLUTION
Note that A, f;, and A; are constant if Bi and the position are fixed. Taking the logarithm of
eqn. (5.42), we have
log ©® = log(A, f;) — 4 Fo

Answer
which is the equation of a straight line, y = ax + b, if y = log® and x = Fo. «——

For a sphere with r/r, = 1, we may take f; from Table 5.1, giving f,(1) = sin(4;)/4;. A; and
/Tl are functions of Biot number, and their values for Bi = {0.5,1, 2, 5,10} are listed in Table 5.2.
With those values we may plot © vs. Fo,  for each Bi. Plotting © on a logarithmic axis has the
same appearance as plotting log ® on a linear axis.

1 | |

rl/ro = I1 —
N ——— Bi, = 0.5
< ]
\
0.1 \\\ B~
N\, N 1
8 |_8 N\ \\\
Tl AN N
| AN N
I \ \\ \2\
0] \
0.01 \ \\ \\\
\ 5
\\ \\ N
\ N ~
\10 \\ N
N\ \
\ R
0.001

02 03 04 05 06 07 08 09 10 11 12 13 14 15
Fourier number, Fo
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PROBLEM 5.62 The solution for a semi-infinite body with convection, eqn. (5.53), contains a
parameter 3 which is like Bi\/%. For cylinders with Bi = 1 and Bi = 10, use eqn. (5.53) to find
® when Fo = 0.05 for each of the four positions shown in Fig. 5.8, noting that r and x coordinates
have different origins. How to these values compare to the values in Fig. 5.87

SOLUTION
Equation (5.53) is:

0= erf% +exp(B¢ + 52)[erfc<% + 6)]
We can write

;Bzh\/a:% a_t:Biro\/I?ro

k k\| 2
To adjust the coordinates to start from the cylinder surface, we set x = r, — r. Then
X I,—r 7 1—r/r,
(=—=" =<1—r/ro>( d )= -
Vvat  Aat Vat v Fo,,
For Fo = 0.05:
1—r/r
B = Bi, VFo,, = 0.2236Bi,,, ¢ = 1=t _ 4.472(1 — r/r,)
Fo,,

The calculations take a few steps, to calculate each function with tables or software, but in the
end we make a table:

r/r,
Case Bi,, B 0 0.5 0.75 1.0
Semi-infinite ¢ 4472 2236 1.118 0
I 02236 © 0.9993 0.9863 0.9331 0.7904
10  2.236 ® 09993 09324 0.7104 0.2323
Chart 1 — ® 099 0.98 0.92 0.77
10 — ® (096) 0.89 0.65 0.20
Owemi/Ochar 1 1.009 1.001 1.014 1.026
10 1.041 1.048 1.093 1.162

Our approximation of the cylinder as a semi-infinite body has the best agreement with the chart
for Bi, = 1, where the largest difference is less than 3%. For Bi, = 10, the greatest difference is
16%.
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PROBLEM 5.63 Use eqn. (5.53), for a semi-infinite body, to write an equation for © at the
surface of a body as a function of Bi and Fo. Plot this function on semilogarithmic axes for Fo =
0.05, 0.02, and 0.01 over the domain 0.01 < Bi < 100. Compare to Figs. 5.7-5.9. (If you encounter

numerical problems for very large values of Bi, note that eXerfcx ~ 1 /\/Ex as x — 00.)

SOLUTION
Equation (5.53) is:

0= erf% + exp(B¢ + 52)[erfc<% + ,3)]

and at the surface x = 0, so that
X
g =—=90
Vat
for t > 0. Since erf(0) = 0, eqn (5.53) reduces to
@ = exp(8) erfc(B) (*)

We can write

mat hL [at N
5 = Kk = T ﬁ = BIL FOL
and we could equally well have put r, in place of L. So, eqn. (*) may be rewritten as

0= exp(BizFo) erfc(Bi\/F_o)

The evaluation of this function can be done with tables of erfc, but it is best done using software
(especially since many values need to be computed to make a chart). The result of such calculations
is plotted below.

1.0 ==L 11|
Y ib
g|. 8 gﬁ\\
|- N\
N 0= 0.05 \.0.01
|l | 0.5 ‘H \\\
Il ﬂ%\
© /L\\
0.02 — R
0.0 | e
0.01 0.1 1 10 100

Biot number, Bi

The curve for Fo = 0.05 can be compared to those for the same Fo and x/L = 1 or r/r, = 1in
Figs. 5.7-5.9. This approximation is hardly distinguishable from the slab result at Fo = 0.05 . It
is roughly 1.5% high for the cylinder, and about 7% for the sphere. Of course, the approximation
should become more accurate as Fo is reduced still further.
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PROBLEM 5.64 Use the method outlined in [5.20] to find the shape factors for Figs. 5.30g
and 5.30j.

SOLUTION

Go to Reference [5.20] in the textbook, and click on the link to that short paper. That paper
describes how certain symmetries always result in shape factors of S = 1. Figures 5.30g and 5.30j
are possessed of that symmetry and are, in fact, both used as illustrations of what the author calls
“Yin-Yang” symmetry. Therefore, in both cases,

S=1
Here is the flux plot for Fig. 5.22¢g (see Section 5.7):

Notice the symmetry
of N and I. They
must be equal,
Hence S=1

And this is simply a subset of the flux plot for Fig. 5.30j — one quarter of its flux plot.

157-A
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



PROBLEM 5.66 The flux plots Fig. 5.31 are for pentagons with bottom edge at T = 1. In (a),
the top right edge is at T = 0, while in (b), both top edges are at T = 0. All other edges are
adiabatic. Find the shape factor for each flux plot. What is the product of these two shape factors?
Explain why.

(A) Top right edge isothermal (B) Both top edges isothermal

Flux plots for regular pentagons with isothermal bottom edges and either one or two
top edges isothermal.

SoLuTiON  Let S'! be the shape factor for Fig. 5.31a and S*! be that for Fig. 5.31b. For
Fig. 5.31a, we count N = 20 heat flow channels and I = 22 temperature increments. For Fig. 5.31b,
we count 20 heat flow channels and 18 temperature increments. Therefore, with eqn. (5.67),

1N 18 21 20
S = =20 " 0.900 and S° = i 1.111
The product S'! x S21 = 1! The reason is seen by rotating Fig. 5.31a clockwise by one side: the
figures are identical except that the isothermal and adiabatic sides have been interchanged, which
has the effect of interchanging the heat flow channels and the temperature increments. Thus N — [

and I —- N.

Comment 1: The interchange of adiabatic and isothermal will always cause the original shape
factor to be replaced by its reciprocal [1].

Comment 2: The flux plots shown here are approximate (the number of temperature increments
was numerically forced to be an integer). Finite element method (FEM) solution of these two cases
yields S'! = 0.8963 and S?! = 1.1157 to an accuracy of about 0.05%.

REFERENCE:

[1] J. Hersch, “On Harmonic Measures, Conformal Moduli and Some Elementary Symme-
try Methods,” Journal d’Analyse Mathématique, 42:211-228, 1982. doi:10.1007/BF02786880
NB: This paper requires a knowledge of conformal mapping.
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Problem 6.1 Verify that eqn. (6.13) follows from

egqns. (6.l1lla) and (6.12).

ut  duv _ _ v d *u
Bcam with v “'_33 = fEPx_ + 2 31
A
W (L ay_j PYSRR WE 1 S o
er “3&*(“ ax+“93*‘raj P ax n"
)

thewn wxuu-‘rlj the COV\'\1uu;L-3e uahon b:) u 1'- }@}: u _Hi + ua_é‘_g

and subkract & 4o Zﬂv"

1
Yu WMo A PACY
o v T N PRl T

s

C

Problem 6.2 Complete the algebra between egns. (6.16)

and (6.20) .
PLAI BT 3 P i
Sharkwibh 55 55, ~ B e = 3gr - Sebshhe Yien) v o)

and ?“:Ju,,hsxg and %g{- eqn. (6.18).

%;%%Jz = (Vs { ) B 2wt s

P2 AL Sk ANNIRL B ‘ -
T T tORE TR 2 sy S
(S

* 9% ox dx

=P -
ﬁ’__ - ?£—I = um)j_’)—l = - Y M ” - _ Moo n
3‘33 Yoo 35 ETREY: zx@&ﬁ " Ze 7§
K t u
B—t S Uy a.L’ = uwai Bl s Uoo s , D_’t - ."ﬁl'f"'

oy Ny o

Cowbine. Yhese 1n Hhe 3™ orda, maw.e?u. I ‘P , aMJ}a{-

- ua‘c’(;%?{") + .‘Z_ g:_-f'(‘(_?-r);;_‘_{h: 5 g:;‘(.m

T
!2 e u L Y/ _ Uu—L " upL )
~a s g T e
h1 ' "
{{"+24" =0 —
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6.3 Solve ff'’ + 2§’’’ = 0O subject to the b.c.’'s:
£¢0) = $/¢0> = 0 and f/(=) = 1,

We begin by mapping the b.c., f/ (=) =1

into the origin,
thus:

sed £=aF(§) od €a% . Thee {=a’F’
f"<a’F"
“:,,,gaqu
So

n " " " "
-['( 1‘1'( =0 becmq WAFE +24°F {=O ~ FF *Z?”/’-'O

with Pe boc. s Llo)=aflo):0 or Floy=0

$0)=>a*Flo>=0 Flo):=0
£y = atfloy=) F'G@)=\/a?
Now we would nenn have Yo 3,0\653 -9”(0) =48 Fll(o) C What
we shall de 1s to Uset F”(o):'l_ so tudk €10y -.:aa’ amdd
Solue FE“A 2€"= 0 subyject %o Elo-= FZo):Q» This solute

wni\ 81\/& a Cer+Aau va{ue oL FI(°°) ‘Frow\ which we Can

caleculake a= iFl(aa)_‘\- 1/2-.

Once we /Cnow 4, we pe‘/'urn

b our caleuladed values F for given values j{ and
correck these back Y £ 244 ’7 ust f=aF 4.4 7= F/Q;

There are ma? ways o Solve the SJ‘/év\ F/ZZF/”=0, @’[ﬂ;}‘o

Flor=
The s/n/;/e.r/ /5//»544? Jo recduce 1 o Fhree fish ordas de.s

thus : lel //:-F) J":F: MJJ,:F” So

CE
df . y'(o):o
éﬁf: 33 jz(o)=°
) s>
- .

Runga-kKutta integration schemes are available in computer

libraries and can easily be called in to solve such systems
of first-order equations.
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6.4 Verify that the Blasius solution (given in Table.s.l)
satisfies eqn. (7.25). Do this by showing graphically

that |
] | ' " o :J_:. ;(u/lln)
s\ v m-nd))-- % 3479

(») Y=0

is satisfied by the numbers in Table 6.1. We begin by
converting the equation with the help of £ = 4.92x/dRe,:

Ue 492x 4 {4-%& 4 (\a) 4(;’ ﬂ . Hufue
R x| Teer et TRl 00 oo

vm———
% 20.332067%/
7. 0. /7
ov 4 02 432 {rom—k-HQG.l
492 Joor A 5% U u
S a1 (- - ezaeecian
® ab
0
- —
o -’-‘Ccn.s’rm\-l K
so K sheuld = 0.c64\2
0.4 |—

There are obout 330, L' ‘§"sgua¢e.s

with annumerical value of
OO0\ = 0.2 or 0.002, €ach. Thus:

Area = 0.660 = K_

So mrl«cd mk va\wx

veriFies the equahn

wita, 664660

cea 0.67

——
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6.5 Verify eqn. (6.30)

Shuek wibh 3:“ (e \)d(u}=§3(u/u,))
()

9(3/8) 420
amd subshhule %;: 32%’%_(%—)3 Lel us call ?;jls.ﬂe«:

R R AN Y

6.6 Derive T, using the momentum integral method.

a(u/UaD u 3
(C = u~ % —_— . = d —
w Qu /%) D(b/s) ) 2
substiute eqn- (131) , %= 4ea
Ty & JaT plie 53233 M= g0

Tl“$l$ OM\D 379 be‘uw %c aacuc,&- vulu(, ee\.n. (6.313

6.7 Find & and Ty Using the momentum integral method and as-
suming w/u, = y/& for the velocity profile.

Using can. (1.25) @ d \ 2
smq cqu. (1.25) E([ggo%(%—ﬂ&\-g]:-é-{xi_

Un
(b . -1/6
| v_ had 5 _ 1 _ 34
So: AS UD%C}\X er :- {Fz@x — m
0 [6]
A\ﬁ&l" 3( )(
vow w2l o MUs I us
Yu M 93\3,, 5 g9, -
%-
= 4
So: _ T = 23 .25 [um - 0.511

s

C-f- -'iloua;" T SUe T2 Ub VDX e,

The use of this extremely crude approximation to W, yields

a viaue of x/¢& that is low by only 30% and a Cg that is low
by only 13%.
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6.8 The b.1. thickness for a particular water flow (plotted
below) is given by § m = 0.0054X m, Add to the plot: § for
the water flow; and & and & for air at the same temperature
and velocity.

003 F~

/'/ i‘(u ~

— /i::”’ Sour
_— /
0.02 — /

_—
_—

0.0\

=

_ ///
S

6.4 0.6 6.3 1.O

$ 5 __ ’ﬂ r
% = = =0,6\3 S . S = J=2v S S JALI 2

Uk U5 3 - -—’:’ S
{.H-,o ?"u.o A34 ! aw Jugo Ha0 D.(.S%lo" Wao

_ 5,083%, 0 =S.0¥3 %, o
St = 8”5 - t;'-_- =5‘-‘“4 % -———-—'—"—'i:'_'
a ﬁ-a“_ 0.104"3 W, 0
6.9 A liquid film flows down a plate as shown, N
at its terminal velocity, with a thickness \
of §,. Derive an expression N R A
for u(y). :
\
'y — §
ub-(-)ﬁzi-u-é_'-‘--— -L‘_{f\_a*ﬁyt :So
——— L,J ‘3 / x 3 N
—_— N1
o 0 - Q 3

So 2 LS
d = -927_ ; U= 3_3_4.6_'3‘61 w/lo.c.'s u(bzo)zo => (=0

A3= 25 Ju) 03 C = -3%
Them 9% _ 3% 9 - —
u= 2.5 T '§: -t
or:
° e
| o s
'%.? Yu I §o 3% R o downward
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6.10 Evaluate NUO_ ¢gr 1aminar flow over an isothermal f1at
plate.

vz 0.3387 P2
We know theak k)u = ARe, | where A= i+ o, oqm/;"ﬂw’ 2
from 9%_" (6.63) SO.

q00% TNa,  ond 3= kmSJ“;r—c\ P LUN P
Then:

m‘ - g._\_"_ - A?;h'_ O.G’I’M-Pr RC\_L

]

L = kAT

A D +0.0468/825] T -

6.11 Use an integral method to predict Nu, for a flat plate with
Qy = constant, and find 4T at the leading edge of the plate

d " T-T,
Pl 4L [S&ATL Us (T_,-n, 2 (251)] =91,
— _

‘3 .3 A 3
‘9 280 = 2

fCUw (SEAT)( 3 S_:)

2 Ue S\ = T~
230—;- 8 ( S) A\'k - Nu’(

_ 3 %[ 3 Us [4.0ax
Bu\" MU‘ - 2 8 (Se) Sa > q( Y—k) —:{

]
T iﬁ) ?r-ls- L291 Pr
%

10
SO
/ 1 '/3 l/’.
Nu = —7\'_% P’ \ze&/" =041 % Re, —

a
MA, Swmee h ~ Rex /’< ~ '/r:

g./h ~ IX

we cwc(uale MWt AT~ O ar He \&m\(jj
clag 4 Yhe hecher -
=0
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PROBLEM 6.12 (a) Verify that eqn. (6.120) follows from eqn. (6.119). (b) Derive an equation
for liquids that is analogous to eqn. (6.119).

SOLUTION
a) Beginning with
1 L

h=—— d
LAT J, I

!

we may evaluate each integral separately. For a uniform temperature surface, the Nusselt
numbers are given by these equations:

Xl Xy L
J Maminar dx + [ Pirans dx + J Rturbulent dx] (6.119)

0 X7 Xy

Nujgm = 0.332 Re!/2 pr!/3 (6.58)
Re,\¢
Nrans = Nujam (Rey, Pr) ( ) (6.114b)
Rel
Nugp = 0.0296 Re?* PrO®  for gases (6.112)

The three integrals are thus

L[ 0.332kPr'A (% [ug . 0332kPr'? | [uex; &
—J hlamdx=—rj g = Lo [HX - Ko 664 Re! 2 Pr
L 0 L 0 VX L 3 L

x k Nugam (Rez, Pr) fueo\e (¥ k Nupam (Rez, Pr) jueo €1,
IO

— h dx = — x6 —x¢
Ll trans L Ref L Ref v « )

c
k Nujam (Rez, Pr) 1 k1
= Z%E (Re;; — Ref) = I [Nugurs (Rey, Pr) — Nugam (Rey, Pr) |
where the last step follows because eqn. (6.114b) intersects Nuy, at Re,, and

lrh bdx:M(“ﬁ)o'gjo—o.z . _ 0.0296 kPr
L), ™ L . (0.8)L

4 X

0.8 0.8
v (ReL - Re,, )

k
= 20.037 Pr’ (Re}® - ReD?)

Collecting these terms, we find:
N — hL _ 0.6 0.8 0.8 1/25.1/3
Nup = == = 0.037 Pr’®(Re}* - Re{l*) + 0.664 Re] *Pr

1
+-(0.0296 Re)*Pi0S — 0.332Re}*Pr'3)  for gases (6.120)
C

contribution of transition region
b) For a liquid flow, the turbulent correlation should be eqn. (6.113):
Nugp = 0.032 Re%8 Pr%*  for nonmetallic liquids (6.113)
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and the integral in the turbulent range changes to

1 0.032 kP9 /1 \08 (L 0.032 kP43
r (” ) J 02 4. _ r (Reg'S—Reg'S)

L
|y dx = Heo -
LLM turb ¥ L vt T T 0s)L

k
= 20040 e (Re}® - Ref)

Collecting these terms, we find:
N hL 0.43 0.8 0.8 1/25.1/3
Nup = == = 0.040 Pr’*}(Re® ~ Rel!*) +0.664 Re; *Pr

1
+ - (0.032 Re28Pr0% — 0.332 Rel] I2pg!/ 3) for nonmetallic liquids
c

contribution of transition region
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PROBLEM 6.13  Fluid at a uniform speed U flows into a channel between two parallel plates
a distance d apart. A laminar boundary layer grows on each plate. (a) At approximately what
distance from the inlet will the two boundary layers first touch? (b) If the flow remains laminar,
qualitatively sketch the velocity distribution between the plates a long distance after the boundary
layers meet, noting that the mass flow rate is constant along the channel. [(a) x/d = 0.01(Ud/v).]

SOLUTION

a) Initially, a flat-plate boundary layer grows on each wall. The thickness of the b.l. is given by
eqn. (6.2):
2 _ 4.92 62)
X 4/Rey
At the location where the boundary layer thickness reaches half the distance between the
plates, the boundary layers will meet. Call this position x,. Then:

d_ s_ 492x, _ 4.924/X,
2 V Rexe Ulv
or

N dyU/v
¢~ 2(4.92)

Squaring this equation and dividing through by d, we get

Answ
% ~ [2(4.92)] 2 UTd =0.01 UTd P

b) Because mass is conserved, when the fluid in the boundary layers on the walls slows down,
the fluid at the center of the channel will have to move at a speed u,,,, > U so that the total
mass rate in any cross-section stays constant. In fact, the same behavior occurs in a tube, as
we will see in Chapter 7.

A sketch of the evolving velocity profile is below, for either parallel plates, with coordinates
(x,y), or a circular tube, with coordinates (x, r).

0
| - Boundary layer
/ Xq
u ~. A
N R=d/2
- s — .y N rory
———— ‘§—~§~~—
—_ - - T e - ¢
—_— - ___—-——_—‘_
—_— -
/
L
|
r——«' ———————————— — 3
3 u B u u
0 0 0 Umax

Comment: More careful analysis, based upon the solution of the momentum equation,
shows that a coeflicient several times greater than 0.01 characterizes the distance to achieve
the final velocity profile, which is parabolic.
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6.14 Do the differentiation in eqn.

(6.24)
Lix) bex)
Lel!?V\lL?: fh‘e Saws “’\Au*: l
R R WA By R
an ax)
Thus : b6 8§00 15
e u(U-u»)c\j = g g—xiu(u-u.)-_\o\-s + tt(ﬁp(u(S,ﬂ-UQ 3. °
o 0 Koo Ve
omd this gqves . above =0
eq,u.(s.zq’g. e%”
6.15 Glycerin or water flows

———

—

over a flat plate at
2 m/s. T, = 23°C

or

f//////'l/ll’/t/’

= T = S7°C -
0.12) and compare X=6 “ X=0.12¢em
the drag forces in each case.

Find: h(x =

Evaluating properties at Ty q = (57 + 23)/2 = 409C, we get:

water: k= 0.L17W[m-2C

3|Jcerm: k = 0.285 W/m-2c.
S = 0.657110°° WYs J 2 0.000227 /s

= 992 kg /n? 2 1249 kq/m3
/%r =4.3¢ J 4¢' 2 254} 3

Re, = 0.1 Cz;/6.$‘1(l0)'7 = 3¢S, 300
Nu, 2 0.332 {3 300 (&30)%= 328

- =k = 2
h(x=0.2)= SNy =118 W/w-ec

Re_= oae(2)/b.ooorar = 1657
v
Nu,=0.332 {1057 (zas1)"> = 14¢

hix=ouz) = ‘Ek\u._‘- 346 W/w-%C t———

ﬂuS 'Hna wa¥w s a Si |[1(.M‘“3 Le"\-ﬁr CJola—w\", Furhwmw-t
The raho % Afué ‘FN‘CGS JTS'.

234 -

[—eemm——

%&n& L ED A 2/@%,___ L&}’gﬂu _
D wake, t‘t‘“)ﬂmA w ¢L9

// 992

So the glycerin exerts 23.4 times as much drag on the plate
as the water does. '
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PROBLEM 6.16 Air at —10°C flows over a smooth, sharp-edged, almost-flat, aerodynamic
surface at 240 km/hr. The surface is at 10 °C. Turbulent transition begins at Re; = 140,000 and
ends at Re,, = 315,000. Find: (a) the x-coordinates within which laminar-to-turbulent transition
occurs; (b) hfora2m long surface; (c) h at the trailing edge for a 2 m surface; and (d) 6 and &
at x;j.

SOLUTION

a) We evaluate physical properties at the film temperature, 7y = (=10 +10)/2 = 0°C: v =
1.332 x 107 m?/s, Pr = 0.711, and k = 0.244 W/m-K. Also, us = 240(1000)/(3600) =

66.7 m/s. Then:
Re;v  (140000)(1.332 x 1079)
= = =0.0280
M (66.7) ==tt
Re,v  (315000)(1.332 x 107°)
Y = = =0.062
S (66.7) 0.0629 m

Observe that the flow is fully turbulent over 1.937/2.00 = 96.9% of its length.

b) First, we need Rey:
uosL  (66.7)(2)

_ 7
= Tamx 105 0010

ReL =

Then we get ¢ from eqn. (6.115):
¢ =0.9922 log;,(140,000) — 3.013 = 2.09
Now we may use eqn. (6.120):
Nuz, = 0.037(0.711)%°[(1.00 x 107)*% — (3.15 x 10°)%]
+0.664 (1.40 x 10°)'/2(0.711)'/3

1
* 500 [0-0296(3-15 x 10%)08(0.711)%6 — 0.332 (1.40 x 10%)/2(0.711)'/3

= 11248.9 +221.8 +236.0 = 1.171 x 10*
Thus

_ .0244)(1.171 x 10*
h:ENuL:(OO )(1.171 x 10%)
L 2

c) With eqn. (6.112),

Nuyz, = 0.0296 Rel® Pr® = 0.0296 (1.00 x 107)*%(0.711)%° = 9603

= 143 W/m?K

SO

.0244
W) = S o, = QPO 5wk

d) The flow is laminar here. From eqn (6.58):
Nu,, = 0.332 Re; > Pr'/? = 0.332 (1.40 x 10%)"/2(0.711)' = 110.9

SO

_k ~(0.0244)(110.9) )
h(x;) = . Nu,, = 0.0280 =96.6 W/m“K
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With eqn (6.2), we find that the boundary layer here is very thin:
_4.92x;  4.92(0.0280)

~ JRe,  VI4x10°

= 0.000368 m = 0.37 mm
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PROBLEM 6.17  Find / in Example 6.9 using eqn. (6.120) with Re; = 80, 000. Compare with
the value in the example and discuss the implication of your result. Hint: See Example 6.10.

SoLuTiON  Equation (6.120) is
o hL 0.6 0.8 0.8 1/2.1/3
Nup = == = 0.037 Pr*®(Re} — Re{¥) + 0.664 Re; *Pr

|
+- (0.0296 Re3Pr06 — 0.332Re/ 21>r1/3) (6.120)
C

From Example 6.9, we have Re; = 1.270 x 10 and Pr = 0.708. We may find ¢ from eqn. (6.115):
¢ =0.9922 log,,(80,000) —3.013 = 1.85

We also need Re,, which we can find following Example 6.10:

0.0296(0.708)°(80, 000) !>
0.332(80,000)1/2(0.708)1/3
Solving, Re, = 184, 500. Substituting all this into eqn. (6.120):

Nuz = 0.037(0.708)*6[(1.270 x 10%)*% — (1.845 x 10°)%#] +0.664 (8.0 x 10*)'/2(0.708)'/?

Re!85-0:8 —

1
T [0.0296(1.845 x 10%)%8(0.708)% — 0.332 (8.0 x 10%)1/2(0.708) !/

Evaluating, we find the contributions of the turbulent, laminar, and transition regions:

Nuy = 1806.6+167.4+167.1 = 2, 141
~—_—— ——  ——

turb. lam. trans.
The transition region contributes 7.8% of the total. The average heat transfer coefficient is
—  2141(0.0264
h= % = 28.26 W/m’K

and the convective heat loss from the plate is
0 =(2.0)(1.0)(28.26)(310 —290) = 1130 W

The earlier transition to turbulence increases the heat removal by [(1130+22)/(756422)—1]%x100 =
48%.
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PROBLEM 6.18 For system described in Example 6.9, plot the local value of h over the
whole length of the plate using eqn. (6.117). On the same graph, plot h from eqn. (6.58) for
Re, < 800,000 and from eqn—=6-k15) eqn. (6.112) for Re, > 400, 000. Discuss the results. (Final
equation numbers refer to AHTT Version 5.10.)

SOLUTION
The equations that we must work with are as follow (all suitable for air with Pr = 0.708, using
the film temperature properties given in Example 6.9):

3 3 ~1/2 1/5
Nu,(Re,, Pr) = [Nui,lam + (Nuzpl, +Nuz'®, ] 6.117)
NUy jm = 0.332 Rel/2 Prl/3 (6.58)
Nuy iy = 0.0296 Re%® Pr® (6.112)

We need to plot these in terms of the heat transfer coefficient,
h(x) = (k/x)Nu, = (0.0264/x)Nu, for x in meters
Now, we have
Uso 10 x

ooy o 9X 6349 % 10°
Yy X T 1575105 - 0349 X107 x

Re, =

so that
Ny am = 0.332 (6.349 x 10° x)*/2 (0.708)'/3 = 235.8 x1/2

Nuy iy = 0.0296 (6.349 x 10° x)°8 (0.708)°-¢ = 1157 x°8

Also, we can easily calculate that Re,, = 400,000 at x = 0.630 m and Re, = 800,000 at
x = 1.260 m. Since the plate is 2 m long, we observe that turbulent flow covers more than half of
the plate.

The transitional Reynolds number is given by eqn. (6.114b):

Nttgns = Nty (Re Pr)<&>c (6.114b)
trans — lam I Rel .
The value ¢ = 2.55 is the same as in Example 6.9, and with Re; = 400, 000 as in the example,

Nuy,, (400000, 0.708) = 0.332(400000)*/2(0.708)}/3 = 187.1

so that

2.55 6.349 x 10°

2.55
2,000 105) x2.55 = 607.7 x2.55

R
Numns=(187.1)< Cx )

400,000/ (187‘1)<

Putting all this into eqn. (6.117), for h in W/m2K and x in meters,

— _1n1=1/ 1/5
h(x) = (0.0264/x) [(235.8 x12Y 4 [(607.7 259710 4 (1157 x08) 10] 1 2]

Likewise
h(X)m = 235.8 x1/2(0.0264/x) = 6.225 x 0

h(x)ps = 1157 x°8(0.0264/x) = 30.54 x~0-2

We may now plot all this. Since we are plotting against the physical dimension x, we will not
use a logarithmic x-axis. The y-axis may still be plotted on a logarithmic scale.
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102 |

’ Problem 6.18 -

turbulent eqn. (6.112)
—_—

Heat transfer coefficient, h(x) [W/m?K]

0.0 0.5 1.0 1.5 2.0

Position, x [m]

The chart shows that eqns. (6.58) and (6.117) are identical for x < 0.45 m and that eqns. (6.112)
and (6.117) are identical for x 2 1.6 m. The heat transfer coefficient drops sharply with x in the
laminar range, as the laminar boundary grows thicker. The heat transfer coefficient rises steeply as
turbulent transition begins and develops. In the fully turbulent range, h decreases gradually.
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6.19 Mercury flows at 259C and 0.7 m/s over a 4 cm long plate at
609C. Find h, T,, h(x = 0.04 m), and §(x = 0.04 m).

Solution Evaluate properties at (25+60)/2 = 42.59C = 315.59K
- . 0.1(0.04) _
A= M‘r(-o)’m‘/sl P-=0.0248, k3732, Rek-ﬁc—a—g = 245 (6O
T 1,39 . W
= 1@,253”‘,_@(_

NuL = l.\3{24$;(,oo(o,ozqe) =88.7 ; LW=288.2 vy

so!

4,92 (o,
= w =0.004 M = O0.%mm (Prc\-\'s 'H\m) -t

S =
ﬂZ‘Ig) Loo

[ w
hL zho= 8,147
- - 13,5130 1.328 N
T = L U C,= % z 8.9\ . -
w Zf £ 2 V24S, ¢o0 M2

It is suddenly trans-
Evaluate the liquid

6.20 A plate is at rest in water at 159C,.
10, and 1000 s.

lated parallel with itself at 1.5 m/s.
velocity, u, 0.015 from the plate at t = 1,

)

Pose Yhe Vro‘o\m'- du =L u 3 1
6‘3‘ 2 dt
with b.e.s: U(ll‘=o) = LSmls ,t20
|ﬁl.S'mls e~ i

uk=0) =

Coo\‘:arc His vt the sewncinbia awn solahas in Sect 5.6

CHEN RTINS ; y
- == T t L. S5 '—' TomVy -Te) =
Tvab bl o wikh boes s (T510) ) )(-\-leo
These Frab\ms are denhicd f: TT.u, x <y, Ty S
ond  (To-T)<s> 1§

) 1 S %e .so\u-\-m_‘

Thu$l l‘-S .So]u*\m J -rl-_: = er@(

4o our Y(o\’\ﬂ'm owce we wmake Yhese ChMa}S . Se:

U_‘_—_;'E- = erf (;—3———3 whoa 252 LISGx107E ™
¥ [

T‘ﬂ%(‘\w&: U at «3:5.06'-“ 1S 3\&» lo_j
u'-l.S'(\—er(-G”)

U O m/s -
h‘*’-‘

Thew o k= &.Sec)

£=1o See, U= 0003 m/s -

t =1000sec, U = [\4 mlS -
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6.21 Use the fact that, when Pr is very large, u/u, = (3/2)(y/8§)
inside the thermal b.1., to create an expression for Nu,

X
during the flow of a High Pr fluid over over a flat isother-
mal plate.

We begin with the integrated
energy equation in the form
of eqn. (6.51).

4 \! U [ T-Te ) £ AT AT’;}?
woor g anf, B (TR0 -5
o 3 -0

T S A8
S S NN W " RN 5
%%1 ‘ —;- S&-*'I(&) ~— ¢
249 -3
27 % 2
0‘( |
q
Ugp m‘f-{g{ i¢x-%—&il+}:\- K)a\x.k = ?ié":;ac
X
\CHE >
3 -
2-%2)4 = 5
of FENEP | - . [ox
lo & A& - um‘b oY gt %4}(
Now we wmiroduce 8‘:-: S & g = fg’gui
Thew usSing ean. (6.31a) %ﬂ#co Q= 220%%;.

We ec\_um\“rc. Mo -\-wo (cx_ffe-SSqu g—w % a,.w\ so\VLgﬂ (f)'.

_ 313
b= %+

(6 “") k—_— .3_ \i—- '::5-.\5...
B\A"‘ , In accovdonce w i @“‘)"- 9 y 2 G4 2439
Thus iy -
= 2 153
Nu,‘-’ Z 4.64% (rs /3 \ <0334 Re, P =
VRey w) ¢/

(The_ m\-ejm\ approx. i Yhe Yech gwes exuctly e ﬁfw d @O\
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PROBLEM 6.22  For air flowing above an isothermal plate, plot the ratio of h(X),yminar tO
() wrbutent S @ function of Re, in the range of Re, that might be either laminar or turbulent. What
does the plot suggest about designing for effective heat transfer?

SoLuTION  For laminar flow of gases or liquids over an isothermal surface, we use eqn. (6.58):
Nu, = 0.332 ReY/2pr!/3

For turbulent flow, we can use eqn. (6.111); however, as noted on pgs. 326-327 (and in Fig. 6.22),
eqn. (6.112) approximates eqn. (6.111) very closely for gases. Because eqn. (6.112) is less compli-
cated, we will use it:

Nu, = 0.0296 Re%8 Pr-°

Then, with Nu, = hx/k, we can simply divide the first equation by the second one:

R aminar _ 0.332 Re¥? pr'/3 10.87

A(X)wibutent  0.0296 ReQ3 Pr%®  Red pro-267

A specific temperature was not stated, but from Table A.6 we see that air has Pr ~ 0.70 over a very
wide range of temperature. So, we may simplify

W) iminee _ 10.87 12.0

h(x)turbulent - Reg'3 0.700'267 B RC?C'3

A boundary layer may be either laminar or turbulent for 3 X 10* < Re, < 4 x 10° (see pg. 276
or Fig. 6.4). The corresponding plot is given below.

1.0

0.8

Flat-plate boundary layer

0.6

hlam/hturb \\
0.4 ~—

0.2 ———

0.0

3x 10 10° 108 4x 106
Reynolds number, Re,

The figure shows that . is always substantially less than /. ,en- TO raise the heat transfer
rate from a flat surface, we should aim to cause turbulent transition as early as possible (note,
however, that turbulent drag may be increased by an earlier transition).

Comment: As discussed in Sect. 6.9, the transition region between laminar and turbulent flow
may be as long as the laminar region itself (see Fig. 6.21). In the transition region, h(x) lies
between the lower bound of A(X),,minar and the upper bound of A(X)ybulent-
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6.23 Water at 7°C flows at 0.38 m/s across the top of a 0.207m long, thin
copper plate. Methanol at 87°C flows across the bottom of the same
plate, at the same speed, but in the opposite direction. Make the
obvious first-guess as to the temperature at which to evaluate phy-
sical properties. Then plot the plate temperature as a function of
position. Do not bother to correct the physical properties in this
problem but note Problem 6.24.

We Ska” -(-Ld uess ’Hﬂa"' ‘Hﬂl Pld"'¢ \s 44‘ -Hu, wmean Mrn_m,}u&
&L 0"'31)/2 247{3 Evaluate Me‘—\«.frofx. at L‘l’)-‘r%’?)/? = 61% '-- wale
props - at (144 /2 = 21°C:

_ 0.38(0.201) _ - 6.38(0.201 =9
Repetn,, = ——————>-°.MU°)_6 = 118113, ?em%‘o.zzwo)-b S, 230
Both ave laminar, Use h=o0332 \\?r"sRe,:/z/x , Se

1/3 b \V2 100
= . . K .38/0. = ===

ka\ 0.332(0.1208)(A %) " (0.38/0.44 (10) )/{,7/ — »

/ ¢ 2
hu 5 = o.33(0.6084) (s.(.s)' 3(0.38/0.37.(.“0) ) /\r'—-onm-x = —=
T ,101-
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6.23 (continued)

u-= ‘/[\r:-‘ * :\—. and U mh.:TN,_O): l""\fﬂ‘ (de-h -T"“)

wekh Mo

hawern | hinyo U | Tew= N ——

%o | Wit | Weioe | wjo | - ez P
(@) 220 =) 220 1 60
0.05| 2s2 | 109} 205 22 T |}
0.\0 | 305 12 z12 30 A0
0.1S| 419 630 252 39

0.0] 19§ SA6 315 Gz 20
0.0l e 536 536 %1

6.24 Work Problem 6.23 taking full account of property variations.

To do -Hms) we reqard the previous solubion as o best i devabion.
Now we rewotk the ?n;l,l&». vsing the P\w\-e -}MPera—H\ms above,

. ¢, /
L R T, MR P2 W | w .
XM TP‘QL( e N U = Tc“ C
O | mebtn] 1120 [mevh [HiOf medh |HO Mern | 1o [mebh|MHz0] T Mt
(o] 1 4 7 1 o6 {1a22]e.1965]0,528 [1347 ) 243231 0o} 24\ 1

005| 22 | sas | 14.5 |05t [1.20 [o.19a4 0. 598 [1794 | 2.0a3 245|100 o0 | 22.7
0.0] 30 | 585 | 185 lo.sy [1.08[0.1932]6.59M |1.26S | 1961} 292 | 724} 212 | 30.3
0.5 | 39 | 3.0 | 23 |041 |095|0.199]0.¢03 |1.230 | L4BYaS |ciz] 247 | 394
ow | ¢z | 7145 | 385 [0.0 |o.1|o. 1801]0.G1% |V 61| 1200} 1261564 D34 | GL.S
0,201 %1 | %1 A7 | 0.3 [0.5t6|0. 185 o.t¥%1|1.6 | usay eo |537] S81 1

No temperature chom A movthan 0.7% . We can bermnde the
Cotenlation . Furthefmore, the plot abore will stand, Mo Pom‘(mt*‘
wiil move bj more Than o fenc\\-w.ou'h.

Better property data have become available since we first worked
this problem. Consequently, the numbers will change a bit. But
the solution remains essentially correct.

6.25 If in Example 6.6 (with a constant q, = 420 W/n’) the wall temper-
ature were instead held constant at its average value of 76°C, what

would the average wall heat flux be?
—_— Ve I/ 1/3
= o, P:.,C-..(o"r./'_'_s_c'-"_'.")o,| = 141,
Nu_ =0.664Re, Pr =0 (o N2 141.4
where we have evalualed arr Vrorerhes oY (ev15)/z = A5.5°C .,
Then:

= R 0.0248. w
e oy 21818 (0:0248) L ¢ o

i
WAT = G0 (16-15 ) = 312 W/m* —

+0
&
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PROBLEM 6.26 In Sect. 6.4, we noted that the kinetic theory of gases predicts values of Pr
ranging from 2/3 for monatomic ideal gases and 1 for complex molecules. Show how this is borne
out for gases at 400 K, using Table A.6 in Appendix A.

SOLUTION
Using values given in Table A.6 of Appendix A we find the following.

a) For monatomic gases, He and Ar, Pr = 0.663 and 0.666. These values are in near perfect
agreement with the predicted value of 2/3.

b) For diatomic gases: H,, N,, O, and CO, Pr = 0.690,0.711,0.734, and 0.692. These results
are within a few percent of the predicted value: 5/7 or 0.714.

c¢) For more complex molecules Pr should begin approaching 1. For molecules made up of
three atoms, H,O and CO,, Pr = 0.982 and 0.738, respectively. Water is close to 1, but
carbon dioxide does not depart very far from the value for a diatomic molecule. Ammonia,
NH;, which is made from four atoms, yields Pr = 0.858, which is well on its way to 1.

The simple kinetic theory is thus quite accurate for these monatomic gases, and fairly accurate
for these diatomic gases. After that, kinetic theory merely suggests the correct trend toward 1.

Comment: If we moved ahead to Chapter 11, we would find the Eucken equation (11.127),
Pr = 4y/(9y — 5) where y is the ratio of specific heats. Thus, for N, and O,, y = 1.4, and Pr should
be 0.737. This value is very close to the actual values above. The ratio y is 1.31 for ammonia, so
Pr would be 0.771, which is low. Eucken’s formula, while it is an improvement, is likewise valid
for very simple and for very complex molecules [6.7]. But it is only approximate in between. (See
Problem 11.20.)
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6.27 A two foot square slab of mild steel leaves a forging operation 0.25 in.
thick at 1000°C. It is laid flat on an insulating bed and 27°C air is
blown over it at 30 m/s. How long will it take to cool to 200°C.

Assume the flow is laminar and state your assumptions about
property evaluation.

COrn()u\'t W based o air at+ & > too::’z.'l 2°°*27 =313.5C.

(This s rech coavse . The value J_dro P ?a fochr 4 Eour
ovee the ra«ng;‘j «le %f&/«’mm 1nvolved. )

B=49.i0 P> o695, k7060918

And /75544.._4 =3.0400) T/ | k., ;=35 af éoo

-~ 2(0.3043)2® ,

— '/'L 1/

Nu, = 0.66qRe, P > = 357 . = 0.04% 03
~ L Ve ! Y l‘ 55 712(0 3047) € M-

Cao\ we use \UM\FQJ MXOL‘\:]? Cl‘e(_\{ 'BL.; iLﬁZC,S(0.0Z%ulk\)

., 35
= 0.048<< 1
Lum‘)eJ Cao)acai'a 1S g\""f’—' Then: . c-l:\uo\fess 3.64 (10) 0.0 251 /4)
= 2e.3
= 19 sec,
Fnedly -
T-Te e t /g . hoo-27 _ - /8)3
ExE ey =0
L

Set L - 1519 sec = 25.3 moankes -

7)\!5 1S «a /Wj 1LI'”?~ 4’"" 15 an /ﬂ@ééb-ﬂVe CO(J[M'IL,
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6.28 Do Problem 6.27 numerically, recalculating properties at successive

points. If you did Problem 6.27, compare results.

F\rs\' Cm?uk Tq a“'
T?\“\_‘ = 1000, 905°C, ote,

—_— } y
Ny, = 0664 Re, %0,

—————

—_ 7
R YILY W

0.609 | B2

w

Tplak “,E‘(Tp*”) +213 lf% Pr K mot h w/m-
oo 18,5 > |80 .108 [0.05¢14{25, 95
Qo0 13¢.S 712 « |9.103[0.053%4| 26, 60
8oo 6%6.5 A3~ 10.102]0.05652 26.0%
100 ¢ 3¢6.S 5.6 | 0.700]0.-0414] 26 .1 &
too | 5865 |a.96|0.098|0.0aa8] 2¢ .28
500 | 53¢, l|4a.28|0.098]0-04m 26 v
400 | a-ge.s 3.0% | 0.699]6 055 2¢.52

- y y 300 | q3¢.5 |3.027|pg0d6.0%a] 2¢.61
W=4.658 P 3l</75 =
- | - -&/r
Now compue T = pc Ehchnss [ = 23, 114§ use T———-w:‘l? = e &
ddva~ce 160C par s bep . Thus
=21 |4- T-u?
'{‘lbm pfevmu.sT +H ’ T sec ?(.:,(%_17 t- _T!"“‘\'.n:, {bh‘\ sec
TL— 9006 °C 891 0.89) 96. SeC 96.6
%00 289 0.3%S] 10%8.2 204.9%
o0 886 (0.316) 121.3 327.6
coo 934 |o0.%54| 1422 469. i
500 $30 | o.5u5| 1681 (3%.S
A 00 3176 | 0.71%8| 20%.1 846.6
300 312 | ©.13%9 2712.2 1i18.%9
Zoo 361 0.6311 395.¢ 1514, 3 —=

We conclude that, since this is within
percent of the approximate result, the
was used in Problem 6.27 is quite good
The_high variation of v is compensated

on b by the variation of k.

4.7 sec or 0.31
averaging that
in this case.

in its influence

Furthermore the initial

under-estimate of T is compensated by the subsequent
over—-estimate of T.
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PROBLEM 6.29  Plot q,, against x for the situation described in Example 6.9. (If you have
already worked Problem 6.18, this calculation will be short.)

SOLUTION
The solution to Problem 6.18 shows that the heat transfer coefficient is given by eqn. (6.117),
which may be written in terms of & in W/m?K and x in meters:

— 1n1=1/ 1/5
h(x) = (0.0264/x) [(235.8 x1/2)5 " [(607.7 X255) 10 (1157 x09) 10] 1 2]

The wall heat flux for an isothermal wall is q,,(x) = h(x)(T, — Ty,). Here, (T, — Ty,) =
(310 — 290) = 20 K. Hence:

5 ~10 1071721
(%) = (20)(0.0264/x) [(235.8 x12) 4+ (607.7 x255) 70 + (1157 x08) ] ]

The plot follows the considerations in the solution of Problem 6.18.

’ Problem 6.29

Heat flux, q,,(x) [W/m?]

0.0 0.5 1.0 1.5 2.0

Position, x [m]
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PrROBLEM 6.30 Consider the plate in Example 6.9. Suppose that instead of specifying T;, =
310 K, we specified q,, = 500 W/m?. Plot T,,, against x for this case.

SoLuTION  The solution to Problem 6.18 shows that the heat transfer coefficient is given by
eqn. (6.117). In Problem 6.18, the wall was isothermal, with

Nuy j = 0.332 Rel/2 Prl/3 (6.58)

which led to this expression for & in W/m?K and x in meters:

B =12 1/5
h(X);somenmar = (0.0264/x) | (235.8 x1/2)’ + [(607.7 x55) 710 4 (1157 x08) 10] ]

The physical properties used in that calculation were based on a film temperature of 300 K, which
must check after we have the wall temperature.
In the present problem, the wall is uniform flux with

Ny jam = 0.4587 Rel/2 Prl/3 (6.71)
As a result, we must adjust the constants used in the laminar and transitional portions of the
equation (in red) by the ratio 0.4587/0.332 = 1.38:

B 1S
RO amitorm e = (0.0264/x) | ((1.38)235.8 x112)° + [((1.38)607.7 x255) 710 4 (1157 x08) 10] 1 2]

The heat flux temperature relationship is q,, = h(x)[T,(x) — T]. Here, T, = 290 K and
gy = 500 W/m?. Hence:

Tw (X) = Too + qw/h(x)uniform flux
The rest is left to software, with the plot below. The plate is hottest where the laminar b.l. is thickest.

340 \ \ \ \ | \ \ \ \ | \ \ \ \ | \ \ \ \

330 |Problem 6.30| —

320

310 turbulent  __|

Wall temperature, T,,(x) [K]

300

290
0.0 0.5 1.0 1.5 2.0

Position, x [m]

The local film temperature is still about 300 K for the right-hand part of the plate. On the left,
the local film temperature rises to as much as 310 K; but air’s properties change very little from
300 K to 310 K. We conclude that the properties do not need to be updated.
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6.31 A thin metal sheet separates air at 44°C, flowing at 48 m/s, from water
at 4°C, flowing at 0.2 m/s. Both fluids start at a leading edge and
move in the same direction. Plot T and q as a function of x up

plate
tox =0.1m.

Make Qnrs'\- caleulahon evalua-\-mj pre ?er'\'tcs 6n the bags o'Q
Telake = 10°¢C (56712, = 27%C amd ™, 2 7%)  Them:

Bore =1:566 (10° Karr 20.02614 T, = O 11
D0 142200) 8 Kp,0=0.6084 Pry, o= 10.26
S0 Uoo 48 x J 0.2 %
= X = = = 3.0LLx10 %X . R ——=
Re,. = 2 e x 5 Reys™ T = 140,650«
’ ’ vz _ V3
Thus the Flows should be lammar : h= % 0322 Rey Pr .
e '
\"aw: Q‘_oé'-‘—‘—?o,';‘zz {3.04(10) x] o.'nl'/%-.-. \3.\5‘/43

43 1
o= O'G’:M 0.%22 {140,650 ""10.26"" = 160.0/{%

'nmem:U_ \ _ \ \
N ‘__\__+-\__('f_;: = 12.15 [NX

\
Ve hpo 13T 160

q="UK = E8(aa-4) < 430 /X =

amd Since a° Nan (A8 =Toiare) so Tprate = 44- 47%3.‘572 = 704°C e

- b
qme § Vplate
' 1+ Ve,
4000 — —40

2000 —
- R Tdplat 1 .+ .-
o — — Tpiarsernt.
oo 1 I 1 1 ‘ 1] I [\ 1 ——0 “lou‘
0.0 % m O.1
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6.32 A mixture of 60% glycerin and 40% water flows over a lm long flat plate.
The glycerin is at 20°C and the plate is at 40°. A thermocouple, lmm
above the trailing edge records 35°C. What is u_, and what u at the
thermocouple?

USMj the momenbuwm M*\-elrai resuld (eﬁn. 6.90) we have :
3s-20 y

40 —20 - % %1'1' Li("s‘kf Qb‘m w\uc,\\ e OL'\'nlv\ ‘ol §-ﬂt~\

omd errur, Y

-g-'{:” 0.1679
T‘nus/ ak 53-0.00)1«) g{?- 0.005%96m ,
And (eqn.1.55) $= P75 = 4235 (0.0065) = 0.0285m
Fmaﬂ:\) fam eg\,n.U'l) .4 , . 4920
X Re.:'?' L JEm, ToEse
¢3900C

S0 Up=10.3495 W\/S"

(Ts ¥ flow really | aomiwan ? Check sk Re, = Faaacd 50,02, Yes)

a,\lqj—-h‘-\{wwuq\c: -2--:0.045‘3/ so %m 2(0.0a58) - ;- [0.0a58)>

= 0.0686, W=0.0232 M /S e
Wus-\h%\qermowur\ed '(:awlﬁ Aee ]3 inh e themmdd \o . and n/etlj
dee | MH ‘HM -C[ow b.l.. Note that SDLH accuwwa/
would “have resulked drom The consistent us j Tdhole 6.1 1n Place é
The \ukjnd method aswmpkmahms.
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6.33 What is the maximum h that can be achieved in laminar flow over a 5m
plate, based on data from Table A.3? What physical circumstances give
this result?

- 1/ _——- U o
eqn. (6.68) h= 0.6GA k?ra Tr but Z 235(10) S>

Wiae = 0664 W B3 _[35(0y/5% =18, S6k Pr >
ﬂne \eur S‘\‘ kP e = \2. 3 (1,( %\uy‘.ﬂ-r\n R/JY (8 C (a VISCOLS ol\ W\lau* wi il »e

betver 16 we had K datn.) Tub Grves: W g = 266 W [m-oC —

This Cov“res\kua\s with Up= 3.5010) [0009»3)/5 58\ m/s . This looks
‘m:)\.. bv a real s:yk« T4 would re%m'c. a Wecculean Pump .

6.34 A 17°C sheet of water, a,m thick and moving at a constant speed
u m/s, impacts a horizontal plate at 45°, turns, and flows along it.
Develop a dimensionless equation for the thickness A2 at a distance L

from the point of impact. Assume that § << 8,. Evaluate the result for
u_=l, 4y =0.01, L=0.1 m, in water at 27°C.

\ A, Wass balance ;
\f L%._. pust, '/)g‘u45 *fg

|
X=0 = §- 3 A’—
AIS )Ai*
]
g__.,-——~_\
32.1l. g
—\02 thcm'i—um eq’n (] aluan 4 a 7 '§'
4.9 . A:. 8
Summar;zeod In: = So: 2o |3
L JRg‘_ 'A 84,
J. Ar | f 43 492 L 4, 1885 L
Ay 8 JRe. A ~/Re. B

< —
| wme——

0.1+ 4
In fhe case (a 6)0‘»&: KQL"" m= 12),065 5o

1.B4S

A, -
-:la-\/-—_—_-_—xo = |.053

(a\' '\’\Ms \00:»\"‘ 6 = 0,0014)4 wl\lc\\ 1§ £< 53 —14115 Conm Jb‘H‘-ﬂ

sketch above, the cheel swells Yo actommodibe the redbiced sfecA
near Fhe wall)
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6.35 A good approximation to the temperature dependence of u in gases 1is
given by the Sutherland formula: u/uref =( TE;;)I.S E;%g:i , where
the reference state can be chosen anywhere. Use data for air at two
points to evaluate S for air. Use this vdlue to predict a third

point. (T and Tref are expressed in °K.)

Students might use any points from Table A-6. Let us do the
problem for air using a value of T..¢ = 300°K and a tempera-
ture, T, of interest equal to 5009k

First we calculate S based on the known values of

BT 1.857(10)™° kg/m-s

Tref = 300°K)

(T = 400°9K) 2.310(10)™° kg/m-s

Using these values in Sutherland’s formula, we get

S =120.7OK g

Then, using this S and K4 (T.o¢) in Sutherland’s formula,
we obtain:

B(T = S5009K) = 2.71 (10)™° Kkg/m—-5 -—ac

which is exactly the tabled value to three decimal places.
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6.36 We have derived a steady-state continuity equation in Sec—
tion 6.3. Derive the time-dependent three-dimensional ver-
sion of the equation:

P . &, -
-a-;+ Vepd) = 0

To do this, paraphrase the development of equation (2.14)
requiring that mass be conserved instead of energy.

n
Hae mass imdo Hhe condvol volume

— -,
fu = .é_
ot

(ro‘e o“ wass s-\-amgg)

or

l |
- - A
- (ﬁu)-nc\S = -—J pdR
5s dtyg

Now we use Gauss’ 'H«eorw) Sls(}oa)-ﬁc\S = 5\&3'/&3 dR_ t ?‘\' :

S (3£ +9p2) AR 0
R

(where we Wave used Ledonitz’ rule as we did in the contexk of
egn. (6.24)

FIM“B‘ since +he \n\-esra‘ must vanmish \Ae/n\-zca\\3, we oblam:

-] S.00 =
e VP = O =

Nokice 'H\a(‘) Swce $fa‘ =/$-ﬁ + a“ﬁf , Yhis can be
rewritten as o
ot -\-/V-u =0

where %—k s dwe sub staubial c\erwau\-\veJ 2P +ﬁ$,o) .
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6.37 Various considerations show that the smallest scale motions
in a turbulent flow have no prefered spatial orientation at
large enough values of Re. Moreover, these small eddies are
responsible for most of the viscous dissipation of kinetic
energy. The dissipation rate, € (W/kg), may be regarded as
given information about the small scale motion, since it is
set by the larger scale motion. Both € and vV are governing
parameters of the small scale motion.

a.) Find the characteristic length and velocity scales of
the small scale motion. These are called the Kolmo-
gorov scales of the flow.

b.) Compute Re for the small scale motion, and interpret
the resuilt.

c.) The Kolmogorov length scale characterizes the smallest
motions found in a turbulent flow. If € is 10 W/kg and
the mean free path is 7(10)™° m, for air at standard
conditions, show that turbulent motion is a continuum
phenomenon and it is thus properly governed by the
equations of this chapter.

(d

a-) Le“j¥\ é(' ve\o(:\-s SCa\cs’ ? égvz canbe {“mc‘l -‘v‘om 3 VT:-)S 2 & '.3-
¢bn4 }S !éi . UUC. %c*i

le"s*\‘ -SCo.‘eJ 7 S (%i>‘/4

Vc\oct\] S(a\e) ¥ = (15 G)‘/4-

3 !
b.) Re = B% = ;}—(-—%\>/4 (zSe)w = L Since vtscuﬂ—n balances
2 == |ne r’no.) Hhe swall sedles
ave ex\-\reme\:S viscous .

¢) For aw at 3060°¢ |, A= LSLCUoS® m¥fs e oat
LYY

7 = (l-S‘c(.ma'5 lo b2 0.00601\4 v

This 15 Far lurgu Hham Yhe mean free ?w\*\q . Therebore

+W“W\-&n\? Mmoo 15 & Contwmuum F»\vaw ewown
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PROBLEM 6.38 The temperature outside is 35°F, but with the wind chill it’s =+52F 24°F. And
you forgot your hat. If you go outdoors for long, are you in danger of freezing your ears? Why or
why not?

SOLUTION
The air temperature outside is 35°F. In accordance with the Second Law of Thermodynamics,
heat cannot flow from your face to any temperature less than that. Hence:

Answer
The answer to the question is No, one’s ears could never freeze. «———

What then does 24°F mean? The heat transfer from our face to the surroundings increases greatly
when wind (forced convection) increases the heat transfer coefficients around our face relative to
the heat transfer coefficients is still air (natural convection and radiation). In a sufficient wind, our
face cools at the same rate it would in still air at 24°F, and so our face feels far colder than it would
in still air. For that reason, the news announcers often report the wind chill temperature as the
“feels like” temperature.

As a matter of interest, here is the National Weather Service’s Wind Chill Chart:

www.weather.gov/safety/cold-wind-chill-chart

From this chart, we find that a wind of 19 mph would cause a wind chill of 24°F at an air temperature
of 35°F.
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PROBLEM 6.39 To heat the airflow in a wind tunnel, an experimenter uses an array of electri-
cally heated, Nichrome V strips. Each strip is 20 cm by 2.5 cm and very thin. They are stretched
across the flow with the thin edge facing into the wind. The air flows along both 2.54cm sides.
The strips are spaced vertically, each 1 cm above the next. Air at 1 atm and 20°C M
enters the array of strips at 10 m/s.

a) How much power must each strip deliver to raise the mean temperature of the airstream to
30°C?

b) What is the heat flux if the electrical dissipation in the strips is uniform?

c) What are the average and maximum temperatures of the strips?

SOLUTION

a) We can consider the airflow around one strip. At 20°C (293 K), the density of air is p =
1.206 kg/m> and the heat capacity is ¢p = 1006 J/kg-K from Table A.6.
Each strip heats half of the channels between it and the next strip above and the next
strip below, in other words 0.5 cm above it and 0.5 cm below it. An energy balance on the
cross-sectional area A, accounting for both sides of the strip, gives

Electrical power dissipation in each strip, P = mc,AT
The mass flow rate for air heated by one strip, m
m = pugA. = (1.206)(10)(0.2)(0.01) = 0.0241 kg/m3

and, in steady flow, this rate is constant as the air passes over the strip, even if its density
drops (the speed increases in proportion; see Sect. 7.2). Then

P = riic,AT
= (0.0241)(1006)(30 — 20)

Answer
=2426 W «——

b) The power is provided by heat leaving both sides of the strip. The area of one side is 20 cm
by 2.5 cm, so

2(0.20)(0.025)q = P = 242.6 W
where q is the heat flux on one side of the strips. Then

242.6 A
q= = 2426 KW/m®>
2(0.2)(0.025)

c¢) To find the average and maximum temperatures, we need the average heat transfer coefficient
and the minimum heat transfer coefficient. The latter should occur at the end of the plate,
where the boundary layer has grown thickest. For both of these calculations, we must
determine Re; .

We need the physical properties of air. Since we don’t know the temperature of the strips,
it’s hard to precisely estimate the film temperature. Let’s guess a value that we can read from
Table A.6 without interpolation, and we can adjust once we have a better idea of the strip
temperature, if necessary. Take Ty = 310 K. Then

v =1.670 X 10> m?/s, k = 0.0271 W/m-K, Pr=0.706
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and the Reynolds number is
UL  (10)(0.025)
~ 1.670 X 105

The Reynolds number is quite low and the flow is laminar over the whole strip. We can use
eqns. (6.71) and (6.72), both with the Reynolds number at the end of the plate, Re; :

Re; = = 1.50 x 10*

Nu; = 0.4587 Re}/? Pr'/3 = 0.4587(1.50 x 10%)1/2(0.706)"/3 = 50.0 (6.71)
Nug, = 0.688 Rel/? Pr'/3 = 0.688(1.50 x 104)1/2(0.706)"/3 = 75.0 (6.72)
Then:
k 0.0271
h(L) = =Nuy = 50.0) = 54.2 W/m?K
(L) = gNu = 5555 (50:0) m
— k 0.0271
= —Nuy = = 81. ’K
h=7Nu = ———(75.0) = 81.3 W/m
The temperatures are:
q 24.26 x 103
T(L) =Ty + —— =204+ ———— =468 °C
) =T + 35 =20+ —513
- q 24.26 x 103
T=T,+==20+ ——— =318°C
o F 7 T 313

The film temperature we guessed was too low. Let’s use the average temperature just
computed to find an updated, average film temperature:
T+T, 318+20

T, = = =169 °C = 442 K
’ > > 69 °C

and the properties are
v =13.109 X 10> m?/s, k =0.0363 W/m-K, Pr=0.698

Notice that the kinematic viscosity is much higher, but so is k. These changes affect h
oppositely. Recalculating the Reynolds number, we get Re; = 8057. The Nusselt numbers
are

Nu;, = 0.4587(8057)'/2(0.698)'/3 = 36.5

Nu; = 0.688(8057)1/2(0.698)}/3 = 54.8

and the heat transfer coeflicients are

h(L) = EN up = 0(;?032653 (36.5) = 53.0 W/m?K
h= %ﬁL = 06?032653 (54.8) = 79.6 W/m2K
These values are about 2% lower than the previous ones. The revised temperatures are:
T(L) = Ty, + % 20 + —24'25632103 —478°C T
T=T,+ % =20+ —24‘27692 10 _gp500 A

Further iteration would shift the values only slightly.
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PROBLEM 6.40 An airflow sensor consists of a 5 cm long, heated copper slug that is smoothly
embedded 10 cm from the leading edge of a flat plate. The overall length of the plate is 15 cm,
and the width of the plate and the slug are both 10 cm. The slug is electrically heated by an
internal heating element; but, owing to its high thermal conductivity, the slug has a nearly uniform
temperature along its airside surface. The heater’s controller adjusts its power to keep the slug
surface at a fixed temperature. The air velocity is calculated from measurements of the slug
temperature, the air temperature, and the heating power.

a) If the air is at 280 K, the slug is at 300 K, and the heater power is 5.0 W find the airspeed
assuming the flow is laminar. Hint: For x,/x, = 1.5, integration shows that

X1
-1/
I x7V2[1 = (xo/x)3/4] " dx = 1.0035 Vo

X0

b) Suppose that a disturbance trips the boundary layer near the leading edge, causing it to
become turbulent over the whole plate. The air speed, air temperature, and the slug’s set-
point temperature remain the same. Make a very rough estimate of the heater power that the
controller now delivers, without doing a lot of analysis.

SOLUTION

a) This configuration has an unheated starting length, with x, = 10 cm. Based on the given
information, the slug is isothermal at a temperature T;, that is measured. The electrical power
dissipated in the slug, P, is also known and equals the heat transfer rate from the slug, Q.
The flow speed (and Reynolds number) are unknown.

We may apply eqn. (6.64):

0.332 ReY/2 prl/3
1/3
[1 _ (xo/x)3/4]

The local heat flux, for AT = T, — T, is

Nu, = (6.64)

_ kAT 0.332ReY2Pr'®  0.332 kATPr'*\/u /v
Qw = X 3/471/3 B 3/471/3
[1 = Cro/)™] V|1 = (xo/x)™]

The electrical power dissipated in the slug is the total transfer rate from the slug, which can
be found by integration. Let x; = 15 cm be the position at the end of the slug, and let
w = 15 cm be the width of the plate:

X1
P:szf qu dx

X0
3 *1 3/471-1/3
= 0.332 WkATPr">\Juy /v J x-1/2 [1 — (x0/%) ] dx
Xo
1.0035+/X¢
= 0.333 wkATPr3\ ux,/v (*)

where the integral was given in the problem statement (or see Comment below).
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For the case given, we may take a film temperature Ty = (280 + 300)/2 = 290 K, and
with Table A.6 the properties of air are

v =1.482x 107> m?/s, k =0.0256 Wm-K, Pr=0.707
From eqn. (*):
y P?
%0(0.333 wWkATPr'3)?

B (1.482 x 107°)(25)
~(0.10)(0.15)2(0.333)2(0.0256)2(20)2(0.707)2/3

Answer
=711m/s «——

Uy =

We can that for laminar flow by looking at the Reynolds number at the plate’s trailing edge:

_ (7.11)(0.15)
17 (1.482 x 10-5)
which normally corresponds to laminar flow.

b) To make a rough estimate, we ignore the unheated starting length. This approach is more ac-
ceptable for a turbulent boundary layer than a laminar boundary layer because turbulent mix-
ing tends to erase the upstream history of the temperature distribution (recall from Sects. 6.7
and 6.8 that a turbulent boundary layer is not very sensitive to upstream conditions).

For turbulent flow on an isothermal plate, we have the local heat transfer coefficient from
either eqn. (6.111) or (because this fluid is air) eqn. (6.112):

Nu, = 0.0296 Rel-*Pr%-¢
We may find h with eqn. (6.112) and integrate it from x, to x; as before:

Re =7.2x10%

P=Q= wJ 1 h(x)AT dx

X0

X1
= 0.0296 wkATPr®(u,,/v)°8 J =02 gy

X0

WKATPrO®(u,, /v)08(x98 — x3®)

_0.0296

0.8
N———
=0.037

= (0.037)(0.15)(0.0256)(20)(16/(1.482 x 107°)-8[(0.15)°% — (0.1)°8]

Answer
=11.6W ««——

Comment: The integral in Part (a) can evaluated by putting s = x/x. Call the integral I:

I=\/x_OJ

We can use the substitution u = (s
the reader to check that

I =% [2vs(1 = 57347

—1/3 X1/%o -1/3
S—1/2(1 _ S—3/4) ds = \/X—OJ S—1/4(S3/4 _ 1) ds

1

xl/xo

1

3/4 _ 1) to simplify further and integrate directly. We leave it to

= 2V/1.5(1 — (1.5)~34)"/x, = 1.003485/x,

1.5
1
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PrROBLEM 6.41 Equation (6.64) gives Nu,, for a flat plate with an unheated starting length. This
equation may be derived using the integral energy equation (6.47), the velocity and temperature
profiles from eqns. (6.29) and (6.50), and &(x) from eqn. (6.31a). Equation (6.52) is again obtained,;
however, in this case, ¢ = §,/9 is a function of x for x > x,. Derive eqn. (6.64) by starting with
eqn. (6.52), neglecting the term 3¢>/280, and replacing 8, by ¢5. After some manipulation, you

will obtain
13

el s T
3 dx¢ +é 14 Pr
Show that the solution of this o.d.e. is

13
14 Pr
for an unknown constant C. Then apply an appropriate initial condition and the definition of q,,
and Nu, to obtain eqn. (6.64).

¢3 =Cx —3/4+

SOLUTION
We start with eqn. (6.52):
3 1 3a
——p33)f1=2 —n3 =
O 75 [5t 77¢ 277 ¢ )(1 SN+ 57 )dnl . (6.52)
= —¢ - %453 = ¢
which, when approximated as shown in the underbrace, simplifies to
d 3 3a
0 2 5359 | = 3
Now put §; = ¢3d:
d .o\ 10a N
6% 2 (08°) = o (*)
Equation (6.31a) gives
280 vx.
2
6% = 13 (6.31a)
SO
280 [ vx
VBV,
We can substitute this into eqn. (*) above and get
280 v 5 10
13 ug \/_¢dx<¢ \/_)
o d 131
(42
\/}gbdx(qb \/;) 28 Pr
Now expand the derivative on the left-hand side
3 2. d¢ _1B1
¢ 297 Ydx T 28Pr
or
131
3 3 _
3 dx¢ + ¢ 28 Pr
13 1 Answer
B3 3 -~ ok
Tt 4P %
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To solve, we notice that eqn. (**) is just a first-order, linear o.d.e. for ¢>. We need the particular
and homogeneous solutions. By inspection, a particular solution is

131
3 -~
P = 1apr
The homogenous equation can be integrated without difficulty:

4 d
gxaﬁ"‘ﬁz:o
4 dép  3dx

—_X— =
3 ¢Z 4 x

3
In¢;, = —7 Inx + constant
¢Z — Cx—3/4
for a constant C. Adding the two solutions, we get
13 1 Answer
3 _Cox 34y 2 —
P = Oy

The initial condition may be applied at x = X, where heating starts and §; = 0: ¢ = 0 at

X = Xo. This condition is met when
131 34
C=———
14Pr 0

13 1 x4
[

The heat flux and the heat transfer coefficient may be calculated from the temperature profile and
boundary layer thickness (as in Sect. 6.5), and, as before, that calculation results in eqn. (6.57):

Then

3k 6 3.1
=335, = 2¥53 6.57)
Then L 3
X X
Nux = 5 = 254

We again can substitute the square root of eqn. (6.31a), and algebra produces the final result:
-1/3
Nu, = 3 /3(5)“ e ¥p 15[y (_>/
* 2V 280\13 v x

0.3313 ReY/2pr!/3 A
Nu, = = for x > x, i

[1 j (xo/x)3/4]1/3

This result is given in the text as eqn. (6.64).
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PROBLEM 6.42 Make a spreadsheet to compare eqn. (6.111) to eqn. (6.112) and eqn. (6.113)
for Prandtl numbers of 0.7, 6, 50, and 80 over the range 2 X 10° < Re, < 107, keeping in mind the
ranges of validity of the various equations. What conclusions do you draw?

SOLUTION
The equations of interest are as follow. Equation (6.111) applies for any Pr > 0.5:
Cr/2
St = RI:uiC)r _ i/ Pr> 0.5 (6.111)
T 1+127(p — 1)/ /2
with eqn. (6.102) for Cy:
0.4
Crlx) = > (6.102)
[In(0.06 Re,)]
Equation (6.112) applies for gases (in our case, for Pr = 0.7):
Nu, = 0.0296 Re>® Pr®®  for gases (6.112)

And eqn. (6.113) applies for non-metallic liquids (which in our case would cover Pr = 6, 50, 80):
Nu, = 0.032 Re2®Pr®*  for nonmetallic liquids (6.113)

These equations can be coded into a spreadsheet range requested, with the results below:

A B C D E F G H
1
2 Pr Re G 6.111 6.112 1-6.112/6.111 6.113 1-6.113/6.111
3
4 0.7 200000 0.005157 418 416 0.48%
5 0.7 300000 0.004739 573 576 -0.52%
6 0.7 500000 0.004281 856 866 -1.21%
7 0.7 700000 0.004015 1118 1134 -1.36%
8 0.7 1000000 0.003759 1489 1508 -1.26%
9
10 6 200000 0.005157 1245 1204 3.34%
all 6 300000 0.004739 1760 1665 5.41%
192 6 500000 0.004281 2730 2506 8.21%
13 6 700000 0.004015 3650 3280 10.15%
14 6 1000000 0.003759 4973 4363 12.28%
1'5
16 50 200000 0.005157 2831 2996 -5.82%
17 50 300000 0.004739 4052 4144 -2.27%
18 50 500000 0.004281 6381 6236 2.27%
19 50 700000 0.004015 8617 8162 5.28%
20 50 1000000 0.003759 11862 10857 8.48%
21
22 80 200000 0.005157 3347 3667 -9.57%
23 80 300000 0.004739 4795 5072 -5.77%
24 80 500000 0.004281 7563 7632 -0.92%
25 80 700000 0.004015 10224 9990 2.29%
26 80 1000000 0.003759 14089 13289 5.68%
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The calculations show that eqn. (6.112) is within 1.4% of eqn. (6.111) over the range considered.
This difference is within the accuracy of either equation (see pp. 625-626), so we can use the
simpler result, eqn. (6.112), when convenient.

Equation (6.113) is within 12.3% of eqn. (6.111) over the range considered, with the largest
disagreements occurring at a different Reynolds number for different values of Prandtl number.
Equation (6.113) fit the liquid data of Zukauskas and coworkers to about +£15% (see pg. 327),
whereas eqn (6.111) is likely to be more accurate (however, liquid data for flat-plate boundary
layers are scarce; see Lienhard [6.6]).
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PrROBLEM 6.43 Liquid metal flows past a flat plate. Axial heat conduction is negligible, and
the momentum b.l. has negligible thickness. (a) If the plate is isothermal, use eqn. (5.54) to derive
eqn. (6.62). (b) Derive the corresponding expression for the local Nusselt number if the plate has
a constant wall heat flux. (c) Find the average Nusselt number in both cases.

SOLUTION

a) Before starting the analysis, consider the problem stated. A liquid metal (Pr < 1) has a
very thin momentum boundary layer relative to its thermal boundary layer (see Sect. 6.4 and
Fig. 6.14). As result, we can neglect the momentum boundary layer and think of a slice
of the liquid metal as a solid vertical slab that flows past the plate at speed u,,. Because
axial conduction is negligible in this case, all the heat flow is perpendicular to the flat plate.
When the slice of liquid metal reaches the plate, at position x = 0 and time ¢ = 0, its bottom
temperature changes from T; to T,,. The time needed to reach any downstream position is
t = x/ug,. Therefore, the slice of liquid metal experiences the same heat transfer process as
a semi-infinite body if we replace the time t by x/u,.

Equation (5.54) provides the heat flux to a semi-infinite body whose surface temperature
changes from T; to T, att = 0O:

k(Too — Tl)
\ ot
Converting to the coordinate X, this expression is

Vmrax [ ug

The Péclet number is Pe,, = u x / o, and we may rearrange to get

_ax [P
k(Too - Tl) B T
hx _ [P
k T

Answer

Nu, = 0.564 Pel/2 «———

q(t) =

q(x) =

b) In this case, we need the semi-infinite body solution for a step change in wall heat flux at
t = 0 (corresponding to x = 0). That’s given by eqn. (5.56):

2 at
Tw(t) -T; = % ;

As before, t = x/uy,. We can rearrange the equation as follows:

QX X [Ty
k(T,—T) 2V ax

hx 7
T Tz VP
Answer

Nu, = 0.886 Pe¥? «———

205-J
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



c) In the uniform wall temperature case, the average heat transfer coefficient is given by

eqn (6.65):
L L
- 1 1 [Tk [uex , 2k [JuixL 2k [Pep
h_fjoh(x)dx_fj‘og\/ e T V. 7a LN 7
so that

EL PeL
— ==L
k T
Answer

Nup = 1.13Pe}?  —n»—

which is the same as eqn. (6.69).
In the uniform heat flux case, we use eqn. (6.66)

L L
1 _ 1 2q ax 4 | aL
K I e N

— WL 37 [u L Ans
NuL=?=T %2133P€}]2 &

B Quw q
w

or
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PROBLEM 6.44 Beginning with eqn. (6.73) show that Nu; is given over the entire range of Pr
for a laminar b.l. on a flat, constant flux surface by:

— 0.696 Rel/2 pr!/3
Nu; = (6.124)
2/371/4
|1+ (0.0205/Pr)*"”|
SOLUTION
Equation (6.73), for laminar flow over a constant flux surface, is
0.464 Rel/2 pr!/3
Nu, = x 7 for Pe, > 100 (6.73)

[1 + (0.0205/Pr)|

The equation applies over the full range of Pr if Pe,, = Re, Pr > 100.
To get the average heat transfer coefficient, h = g, / Ty, — Ty, we need to find the average
temperature difference with Nu,, = h(x)x/k:

1 1

L L
T _T.=2 _ _ 2 Aw
T,— Ty = I JO (T, — Ty)dx I JO e dx

/
1 JL quwx |1+ (0.0205/Pr)” 3]1 .
o k(0.464+u /v Pr?)  4fx

L
1/4

qu [1 +(0.0205/Pr)™| " 5302

 k(0.464+/ugyPr?) 3L

Then we may rearrange, using the definition

ﬁL — qu
k(T, — Ty)
and finding that
= (3/2)(0.464\/ug, L/v Pr'/?) 0.696 Re}/? pr'/? Answer
uL = =

1/4 1/4
[1 + (0.0205/Pr)*"] [1+ (0.0205/Pr)*"?]
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PROBLEM 6.45  For laminar flow over a flat plate flow with Pr > 0.6, how does h for T,
constant compare to & for q,, constant? At what location on a plate with q,, constant is the local
plate temperature the same as the average plate temperature? At what location on a plate with T,,
constant is the local heat flux the same as the average heat flux?

SOLUTION
For the isothermal plate with Pr > 0.6, we use eqns. (6.58) and (6.68):
Nu, = 0.332 ReY/2pr'/ (6.58)
Nuj, = 0.664 Rel/? pr'/3 (6.68)
For the uniform flux plate with Pr > 0.6, we use eqns. (6.71) and (6.72):
Nu, = 0.4587 Rel/2 Pr!/3 (6.71)
Nuj, = 0.688 Rel/? Prl/3 (6.72)

Then, we have the following for the average heat transfer coefficients:
7= 0.664 (k/L) Rei/ 2Pl for T,, constant
0.688 (k/L) Re}f 2pr!3 for gy, constant

The ratio is just 0.664/0.688 = 0.965, so the average heat transfer coefficients differ by < 4%.
For the fixed flux plate, the local and average temperatures are:

X -1
T(x) — Ty = % = 1% (0.4587 Rel/2 Pr'”?)
_ L _
T-T, = wa = 142 (0.688 Re}/2 pr'?) ™

Setting these equal, we get

X - L _
%(0_4587 Rel2pr/3) 7" = %(0.688 Rel/2prl3)™!

or
x(0.4587 x1/2)™" = 1,(0.688 /%)™
Rearranging shows that these temperatures are the same when
X _ (0.4587
0.688
For the fixed temperature plate, with AT = T, — T, the local and average heat fluxes are:

2
Answer
) =0445 ——

7=

k
qu = (AT = 0.332 —AT ReY/2prl/3

Gu = AT = 0.664 XAT Rel/? prt/?

L
Setting these equal and simplifying gives the solution:
0.332 gAT ReY/2Pr/? = 0.664 %AT Rel/2pr!/3
x1/2 2L1/2
x L
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L 2

Comment: Observe that for uniform flux AT increases as ﬁ, whereas for uniform temperature
q,, decreases as 1 / \/)_c

E _ (l)z — 025 Answer
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PROBLEM 6.46 Two power laws are available for the skin friction coefficient in turbulent
flow: Cr(x) = 0.027 Re;l/ "and Cr(x) =0.059 Re;I/ 3. The former is due to White and the latter
to Prandtl [6.4]. Equation (6.102) is more accurate and wide ranging than either. Plot all three
expressions on semi-log coordinates for 10° < Re, < 10°. Over what range are the power laws in
reasonable agreement with eqn. (6.102)? Also plot the laminar equation (6.33) on same graph for
Re, < 10°. Comment on all your results.

SoLUTION  The figure shows the two power laws and the mentioned turbulent and laminar

expressions:
4
Cr= 0455 3 (6.102)
[In(0.06 Re,) |
0.664
Cr= 6.33
f o (6.33)

The ¥» power law is within 5% of eqn. (6.102) for 3.5 x 10°> < Re, < 10°, while the % power law
is within 5% for 10° < Re, < 5 x 107. We also observe that skin friction in laminar flow is far less
than in turbulent flow.

0-007_ | | IIIIII| | | IIIIII| | | IIIIII| | | IIIIII_
0006k — Eqn. (6.102), C; = 0.455/[In (0.06 Rey)]? -
* N e Cf — 0027/Re)1(/7 ]
- --=-Cy = 0.059/Rey/® ’

0.005 ... - Eqgn. (6.33), C; = 0.664/Re,/? —]

S N ]

2 0.004f— ™ _]

E | —

)] - ]

C — p—

© 0.003 | —

2] - ]

=]

3 B i
0.002 p< —
0.001 |— —
OOOO_ ] ] IIIIII| ] ] IIIIII| ] ] IIIIII| ] ] IIIIII_

10° 108 107 108 10°

Reynolds number, Rey
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PROBLEM 6.47 Reynolds et al. [6.27] provide the following measurements for air flowing over
a flat plate at 127 ft/s with T, = 86 °F and 7,, = 63 °F. Plot these data on log-log coordinates as
Nu, vs. Re,, and fit a power law to them. How does your fit compare to eqn. (6.112)?

Re,x107¢  Stx10° Re, x107° Stx 103 Re, x107° Stx 103
0.255 2.73 1.353 2.01 2.44 1.74
0.423 241 1.507 1.85 2.60 1.75
0.580 2.13 1.661 1.79 2.75 1.72
0.736 2.11 1.823 1.84 2.90 1.68
0.889 2.06 1.970 1.78 3.05 1.73
1.045 2.02 2.13 1.79 3.18 1.67
1.196 1.97 2.28 1.73 3.36 1.54

SoLUTION  The film temperature is Ty = (63 + 86)/2 = 74.5 °F = 23.6 °C = 296.8 K. At this
temperature, Table A.6 gives Pr = 0.707. We can convert the given data to Nu, = St Re,Pr using a
spreadsheet.

To make a fit, we must recognize that Pr does not vary. We have no basis for fitting a Pr exponent.
So, we can fit to

Nu, = A Re?
This fit may be done by linear regression if we first take the logarithm:
InNu, =InA + bInRe,

Using a spreadsheet, we can calculate the logarithms and perform the linear regression to find
A =0.0187 and b = 0.814 (r> = 0.9978), or

Nu, = 0.0187 Re!81

The fit is plotted with the equation, and the agreement is excellent.

With some additional effort, we may use the spreadsheet to find that the standard deviation of
the data with respect to the fit is s, = 2.81%, which provides a 95% confidence interval (two-sided
t-statistic for 21 points, +2.08s,) of +5.8%.

Equation (6.112) for Pr = 0.712,

Nu, = 0.0296 Re®8 Pr®® = 0.0240 Re%8 (6.112)

is also plotted in the figure, but it is systematically higher than this data set and our fit. (Reynolds
et al. had 7 other data sets and reported an overall s, = 4.5% for a £9% uncertainty at 95%
confidence.)
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5% 10° ‘ —

Pr = 0.707 (air)
Tw = constant

=)

zZ

o}

O

E

>

c

c 103 — _

(%2} | —

=]

Z — —
[ © Reynolds et al., Run 1 B

------- Nu, = 0.0296 Re%-8Pr%6 = 0.0240 Re?®
— . — My fit, Nu, = 0.0187 ReQ®™* —
300 ' Ll | I I

10° 10°

Reynolds number, Rey
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PROBLEM 6.48 Blair and Werle [6.36] reported the b.l. data below. Their experiment had a
uniform wall heat flux with a 4.29 cm unheated starting length, 1. = 30.2 m/s, and T, = 20.5°C.

a) Plot these data as Nu, versus Re, on log-log coordinates. Identify the regions likely to be
laminar, transitional, and turbulent flow.

b) Plot the appropriate theoretical equation for Nu, in laminar flow on this graph. Does the
equation agree with the data?

c) Plot eqn. (6.112) for Nu, in turbulent flow on this graph. How well do the data and the
equation agree?

d) At what Re, does transition begin? Find values of ¢ and Re; that fit eqn. (6.116b) to these
data, and plot the fit on this graph.

e) Plot eqn. (6.117) through the entire range of Re,.

Re, x107° Stx103 Re, x107° Stx 103 Re, x107° Stx 103
0.112 2.94 0.362 1.07 1.27 2.09
0.137 2.23 0.411 1.05 1.46 2.02
0.162 1.96 0.460 1.01 1.67 1.96
0.183 1.68 0.505 1.05 2.06 1.84
0.212 1.56 0.561 1.07 2.32 1.86
0.237 1.45 0.665 1.34 2.97 1.74
0.262 1.33 0.767 1.74 3.54 1.66
0.289 1.23 0.865 1.99 4.23 1.65
0.312 1.17 0.961 2.15 4.60 1.62
0.338 1.14 1.06 2.24 4.83 1.62

SOLUTION

a) Calculate the Nusselt number from the values of Stanton number using Nu, = St Pr Re,.
This is easily done with software (or by hand if you are patient) using Pr = 0.71. The results
are plotted on the next page. The regions can be identified from the changes in slope and
curvature (part b makes the laminar regime more obvious).

b) The appropriate formula is eqn. (6.116) for a laminar b.l. with an unheated starting length:

0.4587 Rel/? prl/3
[1 - (xo/) ¥4 "2

Ntjam = (6.116)

We have only Re,, not x. However,
xo Rey, uoxo  (30.2)(0.0429)
— = and Re,, = =
x Re, % 1.516 X 1073

With this, the expression can be plotted. The agreement is pretty good. (Equation (6.71) is
shown for comparison.)
c) The equation,

= 8.546 x 10*

Nugp = 0.0296 Re?® pro-° (6.112)

is plotted in the figure, with excellent agreement.
d) To use eqn. (6.114b), we can start by visualizing a straight line through the transitional data
on the log-log plot to determine the slope, ¢. This slope can be determined iteratively if using
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software, or by drawing the line if working by hand. The slope is well fit by ¢ = 2.5. Once
the slope is found, we find the point at which this line intersects the laminar, unheated starting
length curve. That point is well represented by Re; = 500,000 and Nuj,, (Rey, Pr) = 321.
Hence,

2.5
— 6.114b
e 500, 000) ( )

This equation is plotted in the figure, with very good agreement. Note that slightly different
values of Re; and Nuy,,, may produce a good fit, if they lie on the same line. The best approach
is to find Re; and then calculate Nuy,,, from egn. (6.116).

Rex ¢ Rex
Nugrans = Nujam (Rel, Pl‘) (R_) = 321(

e) Equation (6.117) uses the laminar, transitional, and turbulent Nusselt numbers from parts
(b), (c), and (d):
—121 15
Nu,(Re,, Pr) = [NuJ, + (Nu;}roans + Nu;jgrb) ] (6.117)
This equation is plotted in the figure as well, with very good agreement.
4
107 = \ \ R \ \ T
— Eqn. (6.116) for xo = 4.29 cm ]
. ---Egn. (6.71), 0.4587 Re'/?pr'/3 ]
— ----Eqgn. (6.114b), ¢ = 2.5, Re; = 500,000 q‘lo —
— Eqn. (6.112), 0.0296 Re4Pr0- L -
| —Eagn. (6.117) / ]
A Blair and Werle, u//us = 1.0% K
=
< o
g O— ]
o S ]
E -
s = |
o Y N O —
s - T JjE& = _
[} T
©o | A
e N Y~ et ]
z A
Pr=0.71 (air)
[ Increased h caused by q = constant ]
— unheated starting length B
| | I | I
1
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PROBLEM 6.49 Figure 6.21 shows a fit to the following air data from Kestin et al. [6.29]
using eqn. (6.117). The plate temperature was 100 °C (over its entire length) and the free-stream
temperature varied between 20 and 30 °C. Follow the steps used in Problem 6.48 to reproduce that
fit and plot it with these data.

Re,x1073 Nu, Re,x1073 Nu, Re,x1073 Nu,
60.4 42.9 4453 208.0 336.5 153.0
76.6 66.3 580.7 289.0 403.2 203.0

133.4 85.3 105.2 71.1 509.4 256.0
187.8 105.0 154.2 95.1 907.5 522.0
284.5 134.0 242.9 123.0

SOLUTION

a) The results are plotted on the next page. The regions can be identified from the changes in
slope.
b) The appropriate formula is eqn. (6.58) for a laminar b.l. on a uniform temperature plate:

Nupam = 0.332 Rel/? pr!/3 (6.58)

The film temperature is between 60 and 65 °C, so Pr = 0.703. This equation is plotted on
the figure. Only two data points touch the line, but they are in excellent agreement.
c) The appropriate equation,

Nub = 0.0296 Re?® Pr¢ (6.112)

is plotted in the figure, with very good agreement.

d) To use eqn. (6.114b), we can start by visualizing a straight line through the transitional data
on the log-log plot to determine the slope, c¢. The slope is well fit by ¢ = 1.7. Once the slope
is found, we find the point at which this line intersects the laminar, unheated starting length
curve. That point is well represented by Re; = 60,000 and Nuj,, (Re;, Pr) = 72.3. Hence,

Rex ) 1.7

6.114b
60000 ( )
This equation is plotted in the figure, with good agreement. Note that the most consistent
approach is to find Re; and then calculate Nuy,y, from eqn. (6.58).

e) Equation (6.117) uses the laminar, transitional, and turbulent Nusselt numbers from parts
(b), (c), and (d):

Re.\¢
Nugrans = Nujam (Rel, PI’) ( RZ);) = 72.3(

Nu’

x,lam

-10 -10 -1/2 V3
+(Nu +Nu ) 6.117)

x,trans x,turb

Nu, (Rey, Pr) =

This equation is plotted in the figure as well, with very good agreement in the turbulent and
transitional ranges. The laminar fit looks good with one data point, but not the other one.
The data themselves make a sharp leap between Re, of 66,300 and 85,300. (Kestin et al.
varied the Reynolds number between these data by increasing the air speed, u.—these data
are not from spatially sequential points (unlike the data of Blair in Problem 6.48). The onset
of turbulence is an instability, and the change in flow conditions may well have affected the
transition.)
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10°

Pr = 0.703 (air)
Tw = constant

Nusselt number, Nuy

—_
o
n

6.58), 0.332 Re'/2pr'/3

6.112), 0.0296 Re’8pPr06

—Eqn. (6.117), ¢ = 1.7, Re, = 60,000

A Kestin et al. (1961)

-
----Eqn. (6.114b), c = 1.7, Re; = 60,000
-
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PROBLEM 6.50 A study of the kinetic theory of gases shows that the mean free path of a
molecule in air at one atmosphere and 20 °C is 67 nm and that its mean speed is 467 m/s. Use
eqns. (6.45) obtain C; and C, from the known physical properties of air. We have asserted that
these constants should be on the order of 1. Are they?

SoLuTION  We had found that
u=C (,065) (6.45¢)
and
k=0C (pc,,Ef) (6.45d)

We may interpolate the physical properties of air from Table A.6: y = 1.82 x 107 kg/m-s,
k =0.0259 W/m-K, p = 1.21 kg/m?, and cp = 1006 J/kg-K. In addition, the specific heat capacity
ratio for airisy = ¢, /c, = 1.4.

Rearranging:
1. -
c =t - 82 x 10 — 0.481
pCl (1.21)(467)(67 x 1079)
and
.02 1.4
Cym XY _ (0.0259)(14) 0.952

" pe,C (1.21)(1006)(467)(67 x 1079)

The constants are indeed O(1).
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PROBLEM 6.51 The two most important fluids for thermal engineering are air and water. Using
data from Appendix A, plot the Prandtl number of air and of saturated liquid water from 280 K to
650 K (for water, stop plotting at 644 K, which is very close to the critical point temperature of
647.1 K). Comment on the trends in this chart.

SoLuTION The data are plotted below.

[ —
| 0 —
I ]
— > © Air Data, Table A.6 -
- 00 & Liquid Water Data, Table A.3 .
- <
o = S _
e X
o) - ]
E X
C
= = g _
g S
o 7S &
X
1= > @ o N _|
- X0 0 0 9 ]
00000000 ) () () () ) ©
[ | | | | | | i
300 350 400 450 500 550 600 650

Temperature, T [K]

This chart shows that Pr for air is essentially independent of temperature with an approximate
value 5/7, in accord with Section 6.4 (note that the kinetic theory predicting a value of 5/7 applies
only to gases).

For liquid water, the Prandtl number drops steeply with rising temperature in the range up
to 400 K. That decrease is mainly caused by the rapid decrease of water’s viscosity with rising
temperature. For temperatures from 400 K to 620 K, water has a Prandtl number on the order of 1,
only about 1/10" the value for cold water. The Prandtl number rises very abruptly near the critical
point temperature, in the interval 640 K to 647 K; the reason is that Pr = v/a = ,ucp/ k and cp > 0
at the critical point.
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7.1 Relate Uavg to dp/dx in ltaminar pipe flow.
O/2

/U,.,:)%’Dz' "/ Sou(r) 2w dr = (/u)( )zn& [l —-) lr‘Jr
O ")
o + L Q_
: Uavq = ~ ;;‘Bi/:\i D™ —L’/;—‘Dl - 4 ;

7.2 Consider the air flow shown:
After % = 0 either:

Owae '
0.01m
(a) T, = 68.4°9C uWS-z—

2 X
or (b) g, = 378 W/m

Plot T,, q4s and Ty vs. x in each case.

r S 22 X
‘(\u‘ Qvalua“ﬂ S - quoa/x = 2Lz Yo °‘)/Z-tos(co) = 0.2205 X
Ad Nug= F=2— o 001 %= 5 qg5 4=
w ik oo ar ot
[d Uae D aTy _ H?z(low)lz)(O«N)c\_Th
From eqn. (7.4) ‘}‘" ™ p2y Ax
av,
oYy = —
qw 5.93% v
o) T, = 63.4%C = constast
AT" Tb' ‘Tbt' Tw “T\:'Q\
So Tbu. = T"’i +0.44) A“‘M“D (AR} "T\.»;m)
o + . To+ 301600 Nug

i L + ©0.44 | AxNu;

Now we pick an x = O where Nu, will equal <. This
9ives Tbi+ = 27.0. Then we advance by ax = 0. 02, where we
can get a new Nup from Fig. 8.4.

Then we march forward as
shown in the table below.

(b) ;f:o.lw(s?e):c,z.sa se T_=271+03.88%
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. 0383 \a
o T T T, - S s T .
T i = "‘lﬁ +2 A
2/6r [N .Fig. 7.4 Tu: 30.16Nu X Yo = ey wzm. S
Ax(m) | (W) | z0.2205 « [Tyy=const: g7 tonsk —‘——L—\ 0 VA\NU O™ l(é%A‘Tb‘,"\ for G, comst,
ol B o o || 21 (e o 22.0
0.02 | ps.0044l] 21 9.5 29.63 712 43.5
004 | poo 32 £as [ 17 31.63 5% 49.4
006 |p.0\328]| 555 | €3 33.34 4206 Q2.1
0.08 [p.01UT| sy &3 34,%2 363 $4.4
ol | 010 |0.02205] 47 | 59 36.\7 331 £8.0
o1 | o2 |o.0441| 4.1 | S0 aru 242 £8.5
ot | 0.3 |o0.0602| 385 | 47 45.61 194 1.0
02 | 0.4 |0.0882 3.5 | 4.5 4%3% 162 844
02| ot |p.1323] 3.4k |4.364 S3.2€ 120 ?2%.L
02| 08 |p.11C2 56.% 904 1
\ .o |o.22f% 5§91 634 124
| 2 0.44| cS.0% 262 188
T 3 0.662 [AR)A 10\ 252
— 1 w 12.205 68.3 0.3 ¢99
Bl Twe684°%C 200|—

50—

= 0,443 m

X
€y

—400
—| 300 q'u)- 378 -\—N',L= ca’*‘ﬂ*
40 |- 5o e
—{200 /
q’w —|\0co £t
30 — » o | |
o

Problem 7.2: Added Note

Equation (7.30) expresses Nup as a function of the local Graetz Number, for a constant wall
heat flux. We could thus use it, with the help of a spreadsheet, rather than reading from Fig. 7.4.

For a constant wall temperature, we can use equation (7.57) to find Tp. And equation (7.29)
gives the overall heat transfer coefficient. We can then let L be the local value of x, and use these
two equations to calculate T, and the overall heat transfer coefficient at points along the tube. Once
again, a spreadsheet would allow us to carry out the calculations and to plot the graph.
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7.3 Prove that C; = 16/Rep in laminar pipe flow.
Con D

4",.;1/1 cbub ot lal ) =/,.\zﬂ(o-2"9:)hk\= [-4pa /Rl (eqnee)
S0t oA fauT\_ e 1 _ e
G pEtNTE )‘ G GO/ Rep T

(4 $=4¢;=ca/re; ]
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7.4 (a) Find R for the flow shown:

awv —_— 05\“‘4‘"
(b) If the flow were H,0 at piil-L o > @
2009C, what velocity would 4 wls . ~
. s —
give the same ., the l-—-lO.oBm

same Nup, and same Rep? Evaluate properties at 220°C

(c) Would it be possible to model this heat transfer situa-
tion using water at some other temperature. Discuss.

- Ua® _ 4a(o.03) _ ) Na.-0.3 n Ys /4
Cl)Rep = s * Saeriot 3863 so from Fig. 7.14 —P—:—,F}}*.&’_>J
buk Pr =0 I\ =33
wk Pr 20698 so we caleulele k\u’ ~ 30.64

. T = kNugy _ 0.03535(30.t4) W
of: = b - - —
h D 6.03 = 36.1 nioe

B EEEEEEE——————

b) Boe 0.0, Rep= T T

T 23, 20w s wly poitey el

- 20.34 %3 s
A+ Nug = 3064 —°—§)¢(OA) ] = 367

 (o.gm)"3 0.8

where we read from Fig. 7.14 RQD-: 3250 = lll.:q(qo.‘o:?,
o <

So U, = 0.015( 2 e——

% k=37 2CABSY 4o [ (

Vg
6.¢cAal + ..o‘_q)??,.s re P A |
(esn)¥s BT
So we use egn. (7.66) to calculabe Re:(1c7/0.¢2)* = 1.25§,
Thas %\\:e.s 7.2SS = “_«»_‘i'“'_’l So U, = 0.000035 " -

1.444 (16Y ! S

which s a%sur3\3 slow )

C) ﬁu—p = Ln(RGD:PF)
T T Mot woater Pr2Pr, . closel emoué\\ o
make a aooa\ Afrro*\ma‘hou.

This caw be made cqaual + ECD e o Alwc—‘uwl \L Uy 1S
ker-\> veré low .

Thus we can model the air flow approximately in water.
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Problem 7.5 Compare the h value computed in Example 7.3 with values predicted
by the Dittus-Boelter, Colburn, McAdams, and Sieder-Tate equations. Comment
on this comparison.

Solution: Taking values of components from Example 7.3, we get:
hpg = (k/D)(0.0243)(Pr)*4(Rep)°®
= (0.661/0.12)(0.0243)(3.61)%4(412,300)°8 = 6747 W/m?-K
Neotburn = (K/D)(0.023)(Pr)Y3(Rep)°8
= (0.661/0.12)(0.023)(3.61)*3(412,300)°8 = 6193 W/m?-K
himcdams = (K/D)(0.0225)(Pr)®4(Rep)®® = (0.0225/0.0243)hpg
= 6247 W/m?*-K
hst = heotum(is/uw) 4 = 6193(1.75)%14 = 6193(1.081)
= 6698 W/mz-K

The more accurate Gnielinski equation gives h = 8400 W/m?-K. Therefore, these
old equations are low by roughly 20%, 26%, 26%, and 25%, respectively.

Why such consistently large deviations? It is because the old correlations
represent much more limited data sets than Gnielinski’s correlation. In this case,
Rep = 412,000 was a good deal higher than the Rep values used to build the old
correlations.
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If u, and T, vary in Example 7.4, but all other conditions

7.8
remain the same, plot u, against T,.

With reference to the Example, we write:

[} o _ E 2/ 4 -2
e = SRep= B BRI "0 (14552 ] ]

062 (P2
=5 17,8
-l
w222 [‘ﬂ%—; i T“‘
o oz [.9'11}"'" a."l'i
k=1-1
1894 =
W = 5.11(1_ m-—m.'!.)
I, . ¢ Juas  TC| Ye
e 5 T
s wbhgh | 20 | = eo | 133
up rorde| 25 |osc g0 | ss52
30 | 235 loo Z.39
45 35.% 150 £.9]
50 14 = 280 o538
m| |
Un s |
|
lool—
50—
{When u, > 100 m/s, the o I —k
0 350 lala} 150

incompressible assumption

breaks down and the pre-
diction of q is more difficult.)
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7.10 NAK flows full-developed at 8 m/s and 3959C in 2a 0.05 m I.D.
tube. What is h if T, is 403°C?

W =2AW[m-C | Pr=0.00e8,522610" w"/s ot T =399,
({QD-:: 8lcosd _ 1. 498 x10® s the Lflows dzrbulent

2.67 ()7
Then egu. (3.3 awes Nug: 0.625 (1498 «10°¢o. 0068) = 25.01

$0 ho= 281 2500 =13,385 0 ~—

7.11 Water enters a 0.07 m diam., 739C, pipe at S°C. = 0.86

m/s. Plot Ty vs. %, neglecting entry conditions. XSsume
the pipe is smooth. Thus:

Ny = @/%)?e(,?r (/ub\o.n .. \

° e+ E (e \ M T (1320 2o - 140

I.Q- we whove )own -\"\Mz ?-\oes (X a) lhcrwwﬁ d'p 8&/

Tb - -Yi, “~ h D on (Tw‘Tbx) =T + Al r\ 5:( (Tu-Tb,(\)
K4+ GR *® ﬁcP TT(-_%)" “qu T by %CP YO Yavg

h=
T °
0 %““ﬂ bttﬁtc

3{4\3 | 3689 13.0

o, M\
Sxipl R?-p.‘ ‘ublf"‘\ o)
Py Tb‘*wa /‘%glo‘b 0.060% ~ ZS(Tb‘)\
®(=) T, % | = X |5 2 | *s3m0

N g
o s [z [eer Teses1| 1157 0

(YD W) 4.4
4.4%
2 13 |3t o6 [274u ] LisS 0.0023|453| 40%3 205
(sﬁ‘l) 4.4
4.07
09 YA . . .
“ -7) Z 320 32347 106,301 I.1HIZ 0.00222|S08 4618 32.9
k== 4.13
3.67

7 325 | 326 og32, 13153 ] 1.0 6.00219 | 494 | 453C 44.3
(St"‘q) 4.2
3.35
44,3 | 3316 0.482  |124,%26| 1.048 0.00214| 493 14420 55.0

H
(&= S) %’ﬁ%s
3.06

16 550 | 337 o440 [et ) 1.03 o.00z10| 572 1443 5.3
(Bx 2?) 8%
218
ZQ GS-3 342 oo ? n \46,4'71 .01 0.00287 497 4‘67 72. 3

(6 =12) 4o

ik
z

(continued ...)
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7.0 (continueel)

Plot thwe resulls —=

TL\IS " L‘! LQ Conveg.uj
Avo quiekly swin o
-Hq(, \ar (.‘1?5 'kaﬂ-\

\n+¢r (2 %c ca\tu\a""lo\

(c§ Peoblon 7.13)
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7.14 This problem can have hundreds of solutions. It has the
value of putting the student in an active (attack) mode.

7.15 Water at 249C flows at u va
tube which is kept at 300%°
inar or turbulent.
fully developed.

= 0.8 m/s in a 0.015 m smooth
The flow could be either 1am-

Calculate hturb.’"]aminar if the flow is

The propaches at T=232222 g0 0m300%K are: o = 0.326015°
F z

k = 0.6084-

pe = 4.6 =10
u D Pr = 5.-(:5-
Rep = == = 14,528
-Fnr \aminar C—‘ow : NMD= 3.‘-5%) h= oo'f’:‘%s_q 3.65% = |4—%,‘?;ro
-f'vv —\'ur‘ou\.an" C\ou .
£ 4
r-3 = 0.0635S

8(1.v2 Q’j.,'“*sn ~-1.64)?
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7.15'(Ca~v\-1nuec\\ %RC-D P ('ub\SJ‘

NuD: Lo+ IZ.—’I@#”.\) _}-A:
At 0. [ \oM
b G o) s B, 15" = (225 e, s

L0%4 w
Nug= 109.2, h —=‘Zi’j§ 1092 = 4429 o =~
%us . / _ 490 _ 79,3~
‘:ur‘.}u“w* \“‘“"\‘s’ \4?.4’ N =

Turbulent flow (in this case) gives 30 times the heat
transfer in laminar flow.

7.16 Laboratory observations of heat transfer during the forced flow of
air at 27°C over a bluff body, 12 cm wide, kept at 77°C, yield
q = 646 W/m2 when the air moves 2 m/s and 3590 W/m2 when it moves
18 m/s. In another test, everything else is the same, but now 17°C
water flowing 0.4 m/s yields 131,000 W/mz. The correlations in
Chapt.7 suggest that, with such limited data, we can probably create
a fairly good correlation in the form: WI: = Re®Pr®. Estimate the

constants C, a, and b, by cross-plotting the data on log-log paper.

2 18)(0 1T
for Yhe aic case: EeL= ([ 08"09 )(_(\0)_,,-) = 13,27 or /13,400

wmd Pr= 0,709 .
Ny = L _ ©4c or 3590)(0.12)

LT AT G7-27 (6. 0m97) = 22060308 L
‘Q{ wa\—c,,(-- R - 014‘(_01"7.)
H e = == __7 _ -
L oste oy B4,80L , Pr= 3.7,
- 13, , _
amd  Nu, = oo (012) 41).5

(11-11) (0. 0361)

(ovey)
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746 (continued )

500 p—
’-_Thls curve Sujjcsh That
L Thscurve Su33e5¥s A - — a3
Nu thed ”T‘L: cR 9_3’{4 pe ,,'5"' i Nu = CRe P~
L | Qe
Ke =8 6
200 PSuecho~r)ovw+ ‘Y’U\- use =~ ’ \ lml
- . ]
S ““ :“J“““"_ 07 1.0 p R
cpeT YromdH Mo, Pr
7/4__ 1/3
use  aIS=C(39906) (3.67)
100 |— 4o gqet C =
B A W0 date Po.u%- 3" ©.0531
: Oawr dat Pom‘\'f Them :
L f— 34
‘ Nu. 20.0537Re o e
50 L | | S WO G U TR 5 < b L
1o 20 Anch 105 1.25(i0)

Reano\-cls Ve. , RQ\_
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PrROBLEM 7.17  Air at 1.38 MPa (200 psia) flows at 12 m/s in an 11 cm L.D. duct. At one
location, the bulk temperature is 40 °C and the pipe wall is at 268 °C. Evaluate 4 if /D = 0.002.

SoLuTIiON  We evaluate the bulk properties at 40°C = 313.15 K. Since the pressure is elevated,
we must use the ideal gas law to find the density of air with the universal gas constant, R°, and the
molar mass of air, M:

_pM _ (1.38x10°)(28.97)
P = RT ~ T(8314.5)(313.15)

The dynamic viscosity, conductivity, and Prandtl number of a gas depend primarily upon tempera-
ture. At 313 K, u=1.917 x 1072 kg/m-s, k = 0.0274 W/m-K, and Pr = 0.706. Hence,

= 15.36 kg/m>

D 15. 12)(0.11
u 1.917 x 1073
The friction factor may be calculated with Haaland’s equation, (7.50):
-2
6.9 0.002 """
=:1.81 + =0.02362

f { O8101 7058 x 106 ( 3.7 ) ]}
We can see from Fig. 7.6 that this condition lies in the fully rough regime, as confirmed by
eqns. (7.48):

) 0.02362

Re, = -2 = Rep % \/% = (1.058 x 10°)(0.002) ~114.9 > 70

Next, we may compute the Nusselt number from eqn. (7.49):
(f/8) Rep Pr
1+ f/8(4.5 Re%2Pr0-5 — 8.48)
(0.02362/8) (1.058 x 10%)(0.706)

1++/0.02362/8(4.5(114.9)92(0.706)0-5 — 8.48)
= 2061

The temperature difference is quite large, so we should correct for variable properties using

NUD =

eqn. (7.45): o o
T\ 313.15\
Nup =N 2 = (2061 = 1594
i “DT,,(TW) ( )(541.15) ?
Finally,
k 0.0274
h=—Nup = 1594) = 397 W/m?K
p Nup = 577 (1594) = 397 W/m' K
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7.18 How does h vary with the heater diameter during crossflow
over a cylindrical heater when Rep is very large.

From ec""’(a'gﬁ) Lo - O.bzRe‘,l;'?v-‘l3 Re %% )
hacg Re, o = (L (o/ee) ’1"4(2313003 = L) Rep

Therefoce :
[\’k(;\(fr :‘?‘1 whick s wclependent of D -

We encounter this size-independence again in natural convection
when the size is large. See Problem 8.31.

215c¢c
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7.20 Write Rep in terms of m in pipe flow and explain why this
repesentation could be particularly useful in dealing with
compressible pipe flows.

PUD  PUA 4D 4
- - -

m must remain constant in a compressible pipe flow while
both £ and u vary. 1In an isothermal gas flow with a pres-—
sure drop, we see that Rep actualiy stays constant -- a fact
that is not clear in the conventional form.

7.21 NAK at 394°C flows at 0.57 m/s across a 1.82 m length _
of 0.036 m 0.D. tube. The tube is kept at 404°C. Find h
and the heat removal rate from the tube.

Evaluate the properties a (94 + 404)/2 = 399°9C;

Re., = ub _ 0.57(p.03¢)
LA 2.t7x1077

Se we use egn. (8.15)

= ’15,854-, Pr=0.0069 ; P‘s"&'\,"" =523

TN Bs ss 261
216SS 5 h=Nup = less ==
Awd: =12,218 By~

— \ Uk}
NuD = 0.3+ 0-67.(73.354)/1(0.00(,2'.)
[+ (0.4 /0.00¢8)* 17

[

Q=WALT = 12,275 20 (0.03¢)] (404-399) = 25,2000 ~

7.23 Check the value of h given in Example 7.3 by using Reynold’s

analogy directly to calculate it. Which h do you deem to be
in error, and by what percent.

Direct use of Reynold’s analogy yields the Colburn
equation. We have already made this comparison in
Problem 7.5. The resulting deviation from the far
more accurate Gnielinski equation was 26%.
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7.26 Report the maxumm percent scatter of data in Fig.7.14. What is

happening in the fluid flow when the scatter is worst?

We \o\wk\ﬁj 4he distamce t between Yhe highest \

and lowest pounts at Re =30000 and Compare.
t with the log scule (s we see here?) o
s
The errovr 1s such Yuat  58(1 +scatrer (V> scatter) = 100, ®
Set geqlber = % 03 = % 31 -

The ecror, while not 38"9-4‘4-“3 s bad , 1S s%il high 1n e
ramgg . 26000« Re < 300,000 . Fiqure 7.11 411% s Huat

n s rangg, the conventional vortex street s graduall
breakmg down amd becsming Hree-dimensional . ew the™ b. !,
on the “c

. finally becomes Furbulent (aMJ vor tex sheJJms becomes
ureleav —= see Rg, 7.12 ), thew the secabber reduces babot . 9%,
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7.28 Freshly painted aluminum rods, 0.02 m in diameter are withdrawn
from a drying oven at 150°C and cooled in a 3 m/s crossflow of air
at 23°C. How long will it take to cool them to40°C, so they can

be handled ?

we shall eva|u§¢3~e ar J)ro erhes ad an averaqe avernge )—e«r-
erddure of ;;_-l iSorzf Y 4__1;_"2] = 57.25 C = 330.4 K

A=1982 (% , k=0.0282  ?r= 0108

v aluminin /CF = 2701(966) = 2,45~Lo‘%z,o¢) k=200

Them
o RQD: C?—;;%(:;—?_—z = 3027 so we use eqn. (7.66)
- 0.62/3027 . 08'/3
NUD = 03+ o] 276

fi+alon 08)”* 1" -

—_ _ wWJ
umd h = Qa, -‘;— = 2726 (p.oz82)/0.02 = 39.2 T

Mew\:, we C,n\c,u.\a\‘c Bj_:w = 00,0033 L& i So we
240 /

Coan ASSUMC. lumfezj Ca‘,)a,a ,

- cV - peD  zacue)éo.0 _ -
T 7%; )%f— - = 308 sec

4 (39.2 )

T-T, -23 -t/30
Oo \ - 4_(2___2_. - 0,134 - ¢ /
T=50 IS0 23

Thus b will dulce t = 623s = 10min,23s —=
o cool thve rods.
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7.29 At what speed, u_, must 20°C air flow across an insulated tube before
the insulation on it will do any good? The tube is at 60°C and 6 mm
in diameter. The insulation is 12 mm in diameter with k = 0.08 W/m-°C.
(Notice that we do not ask for the u_ for which the insulation will

do the most harm.)

Witk reference + Ciq. 2,14, we requie hat Hie sum o Hhe
thermad recistumces of he insulated fube wust exceed tha
thermal resistomce around the aninsutabed tube. So-

+ \ Q/\" Ly /r,; \ \
Re v Re o s Ry b L
ns. fube urmas. fube 2 ﬁkms Tl Mias, o
ort ha . . lan9s 2683 53.08
271 (0.08) 2n(o.oo)h,, . zmlooo) b, o 7 ws.  Muwas,

Te Ca\cu,\ax'e 1—4\ we Sl’\al\ .evalum't-e {)ro‘)ar‘{ﬁes a{— T=21% (T‘,,, =34°C)
L} } < _ .
omd coccect lober 1§ we must. (JeiSLe10, k=002614, Pr= 711)

To calecalale -\nw , we cualucte at Gorzo)[2 = 40°C (S 169107,
LlD.OZ?O']I Pr = O."HO) , Thew usivg cegn. (7.68) we ?e.\-:

1o Y
_— 0.006 > . J
Muo = 0,3 &+ O'C’z(t.fﬁuor;\) 0.7110  We LA 0.003 1_{0'
Unins, ( 0. 667\Ya -_‘DT_;) «©
L + (0.4/6.110) 1.63(0.2

= 0.3 + 9.5 fm (\ + 0.0193 (W )

\ /2 // —_— Y
0.012. f4 2
7 N 0. 62 (Zmss) O e [ (0.0\2. ) ”J
Up o = 03~ (11 0.4 fomny NG 1.5 66 (0.281), VU

= 0.3+ 13.45 Uy (1 + 0. 165]0 )

Now solve b‘j il and eccor

—_ - o026 | — —  —— 0.621] ] 53.05 L3715+

Ua % Nuow Wone = k)upéz-;zl—z‘ Nuoumu l/lu"‘-Nu,,u 2 000 oomns. 2[..%"“.
\ 15,97 34,79 10,18 45.9 VIS6 | 2.142
0.5 | 10.92 23.79 7.133 32.1% (.48 | 2.494
0.25 | 7.58 (.5 5,056\ 22.%l 2.32 | 2.9%
ol | ¢ 14.12 4.537 20.47 2.595 | 3.18\
Ol 4.3 (0.40 3.266 ) 14.74 3.60 1 3.9
005 | 3,42 7.45 2.382( 10.75 4,94 = 4.,%

e s Gwst——— Se———

insulation is to serve its function. (This gives T

outsid
= 48.89C so properties would better have been eval uagea ag
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7.32 Evaluate Nu.D using Giedt's data for air flowing over a cylinder at

Re, = 140,000. Compare your result with the appropriate correlation,

D
and with Figure 7 .13

\BO
Nug = T:?Bgo%"‘(e) e =é6% O%Q)L %, . Obkin duka - Fy.7.13

- i\'ga[“éo (4 0) + 360 (20) +2R0 (?,D) ~+ 2_‘5_0(\0) A 360('03 + 410(20)
+345(20) + 345(ad)]

T\E-o— = 3E4 ‘(‘W\« C\)ea“‘: 's Aa"‘c\ -

T\f\e a?‘)(‘o?nﬂv‘te Cof(é'l&-\"tm 59 eq_n.(7.68), We don'“ lenow 'Hae ‘LQM
ot the ar, butr the av\\3 ‘

1S \/cr3 msenm\-wc

Thew-.

Y

?m?er’rj we need v evaluate ¢ Pr 5%
to demp " Use Pe=0n (heT=21%) .

1
Nug = 0.3 ¢ o'bl(lqo'wo"lz(on“)/} [‘-\- 1400c0\/2] 310 ==
° 1\+~ (0a/on “)2/3]‘/4 gezoce gy

(T-@ one ﬁrr‘awouus‘B use d eq‘_n.(7.65), \\e’cj a[‘f ED =27 w\mc\\ s 1&4)
The correlatum una\o.rPreJ(c}s Mo data '03 12,4% .

B et

F'rm Fl 7.13 we read: i_ &\¥3 ‘/4\
. . 3 Vs -0: . /4
) o= @” °3) H()om) J s ito

at \ZeD:l‘lO,ooO, (.neo\"rfs
Aa.\-a ‘(Jom'\- 3“’% {._.} = 495 w\'\\c\« 1S k.3\‘ Lu-l- Y ‘Hae .ranzL

%’“«e othay datn, The correlahion ()asses %’Mrouz)la {"'-& = 39§,

——

7.33 A 25 mph wind blows across a (.25in. telephone line. What is the pitch
of the hum that it emits?
, . o -5 b S
We dowt kmow Toue , but between 0 aud 100°F | LY < 25 5 < 2.900)
And zg‘m?l« = 3C.CTH/s = AT mfs | 0.25m.=06.0208¢ 2500635
Them Reg= 282 o, 2958 Reg 4437 .

Ps
Tt ramye (sea. 9\8,7.12) Ste s vn.r‘-\-ua% comstunt ot 0.21.

Therebne O‘L\:’%EE . §, = on(3e.c1)/o.0ozer = 370 excle [sec
Brne Wall s\:c? W a tempeced scale 1s 4 fuckor )

ofF ' w1.0595 1n -Gveas_uewcj . wWe noke ¥adk

A440/(1.0535)> =370, Therefore we are 3 halfk fones §¢°:3 J
below a concael A The \3\‘\:4‘1 1S an {*"“,
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7.35 Consider the situation described in Problem 4.38 but suppose you do
not know R. Suppose instead that you know there is a 10 m/s crossflow
of 27°C air over the rod. Then rework the problem.

Witrh releence 4o Lhe solution to Prblem 4,28 we shall +ala

the root m?era\um v be 122.4%C 4o evaluake Pmp-ﬁrhe&,

Then Hhe Averaz;__, owemzé;'_ 4—%‘) o Hhe rod s (‘_2%17:3 +Z."l):50,%°€,
LCVS evaluate ‘)mPerlnes aX B25°C 31,4» s”uY\tcd'j's sake :

- -5~ - - = 0.008(10) _
Dye = 1.8400)° | L =0.02792, Pr20.109 s Rep 1.714(.o55'275(°
T‘Awl uuth -\’\12. Le\P o(: eq_n,(7.66)
NV . | i3 - 0.027%2
NMD" 6.3+ 0.62 {2ive (0-703)'/ - zg& l‘ = 25.9 _D_Z__ = ‘qﬁ-\%_
D +@.4_/bn°3)l/3 a4 Y 8.00§ M °C

TL\\S s WlHMn 47.; ‘H\L o snwL QSSumF},m é} I@J S0 Ao veikerqg-
Fiom s veeded, Thom in accordance with Prdb|am 4.38, soluthon;

9. a [
NY = = =] l‘iprenou.s - ’]go _ o
k m k”‘Prckus k " ew =954 144 = 21.4°%C

Thes: T =2 914+21= 124 4% -

base

7.36 A liquid whose properties are not known flows across a 40 cm diameter
tube at 20 m/s. The measured heat transfer coefficient is 8000 W/mz"‘C.
We can be fairly confident that ReD is very large indeed. What would
R be if D were 53 cm? What would ki be if u_ were 28 m/s?

At larga Re, eqn.(7.68) reduces o Nug = Q.(‘;‘:g;‘:fﬂ,s) Re o
or .l; = -Ch(Phjswn,l ProPef’hes) Ues

Therefore: A ckang,z of diameter will not wfluence E —

And since r\ ~ Ueo , the new T\ wnll be:
Iy wW

- 28 _
b 8000 22 = 11,200 =~

[
3
o
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7.38 Glycerin is added to water in a mixing tank at 20°C. The mixture

discharges through a 4 m length of 0.04 m ID tubing under a constant

3 m head. Plot the discharge rate in ms/hr as a function of composition.

v
Yav £ Fig. 7.6
US\AS eqn.(8,203 , -‘ - 2 - 14 _ 3 —vogiul ;(Reo) rom Fig
A uat T T &4 . 0038
.09 2.% Sr,ouag Kao = ___u_‘:,_

(t\\o\-e o msteuckses . How mans shudedds w, ) taragy Yo add the Uclb(,A\n} head
3 ¥
b 3m 2 Per'na‘as dpn should “remiad thew )

Fahse.| B nls | 9RoRe, {Tan womeer g 7-6_|Flow rade T(oaT uar 300
O [1.035105%[38647 uay | 411 Furbulet| 2131 w/wr
20 .68l » |237195Uay | 4.61L ‘ 20.90
40 3467 (WS37uav | 4,39 s 19.86
6o 1936 * (421 uUa| 3,93 |, . 17.18
B0 4.9 uo\'s 805 ugy (‘3?_.'27_ -k*m}:: ( \55:,: ég)
Lo0o 0.001Z 35.1u,,| ©.0322 \amnar 0.1\S
{00
L laminar i\ The way values
Z 3‘3& 20 |— 1 N turb l'\a,ved bk’c@:vob}-
. N - aine v
60 = ¥rancihon ulent 2 eerar )LASMVJ{
B range rar3e FaLB.6 inbe
46 |- furbul et % &
N =G4/RED in The
20 b— larvainan rMy .
0 Fi l - l g .
P 5 o 5 20 low rate [(12/he)
228
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7.40 Rework Problem 5.40 without assuming the Bi to be very large.

we need Il, Swmee Bt should not be small we shell evaluale
Yro?whes close f the ges -hemp --ak 21°% o 550°K - rand

use eqy‘-(7-68)-n“”“ © S=445¢i05%, k0042, Pr=0.698

- 0.26(}V)
4450 10yt

l”
:  Nu. {5B3s 5
= 5835 = Nug= 0.3+ 242 ls‘?is@m) ( &L ;)/83%'

! 292000
= 39,714
- 0.0426 — =t 0.68%
= 39.714 —== 6.5 Be = &-ef
h 0.26 ;= 6.51(0.13)

s Jues Fo=0.3 so t=0,3 013350057 = 37,555 sec

'ﬂaere@m-e the cookin ‘l"\m-e 1< Consw’erz‘l;‘ st-c.\AeA{-b 1043 lhes

The Coa\(mci s hould ac\'u«\‘oj Commence abE about SI30AM =

(whem s 15 done v Uh , the g 15 starked around 7:00 ov RL00.
J

Tt cooks more C*'Jtck\j Haw we prcdxd- because *he €lgme also
heats a bed of coals Lhich radiate aab\thov\a\ heal Yo the P‘S-)

7.41 Water enters a 0.5 cm ID pipe at 24°C. The pipe walls are held at
30°C. Plot T, against distance from entry, if u,, is 0.27 m/s, neglecting

entry behavior in your calculation. (Indicate the entry region on your

graph, however).

A+ 270[: 75:0;826[[0)‘6/ prc 555/ 2eﬂ = D'LS-{O'% = /454 //4»1/04/‘)

T 0.82¢ (10)
Then om €475.7.57, 7.58, and 7.23, 30 /
T, - T, Nun® 3.08% 29 T,
By gy N y
Tw'nn f Pr Re, %X 26
T,=24+ Ci-exp(-03114)) 2

26
Xg 20.050Re = 0.409m

2S5
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7.42 Devise a numerical scheme that will allow you to
be able to find the velocity distribution and friction factor in a
square duct of side length a. Set up a square grid of size N by N and
solve the difference equations by hand for N = 2,3 and 4. Hint: First

show that the velocity distribution is given by the solution to the equation

2 2

hTu U _
7t -z °!
aX y
where U = 0 on the sides of the square and u = u/i— H}Z_ , X = %

and y = _aL‘ Then show that the friction factor, f,[cquation (8.21)], is

given by
-2
pu_a e
‘;V #udxdy

Note that the area integral can be evaluated as ):1—1/N2.

f =

S°\“"h‘”‘ Bj ’lw:@'ﬂe discossiom Ynecea\«é? ‘f go”’wu\é eqn (8. 6)

we wnlbe mom. eqn. G & §quare b as:
3 u ;2 )_ A % _ Voo (V3
3:(1 U =/‘_P- W,MSMj X= 3z, j_%)é‘ u--;-_E——d——-&
n2- e M oan
cFt FeTDe A wbber Ui mallade.
1
Now, since e Llow wosk be s mme trical o bouk \\ | //
-Hao a\\abau A\Jm«\- Ye bisectoes of fle 5\“‘3‘ d_Ne L
we need omly solue v Flow 1 Cl/e) A Fhe Aut—"' 5\\
to kuow arnbirt Elow leld, However: E. N

by ia o«:k‘ a S%uﬁfﬁ %’ﬂA ﬂ& size AR ¢ u.sn:j contral A “—W:.os
o\obub P }a,.\gm,l ‘)om-‘— L, . We aﬂ,

u\.—\d* u‘*‘uJ j ) bty Lan Tt =4
AX ™ Ay
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7.42 (Contmued)

Now 'Cw od acc umc3 A mush be << 4. Ll-”,e“,./ we

on\3 wm-‘- + shows Hhe wmethod hoe so we use a
verd coarse TA: AX = \/3

—_ o o
a - u-‘.‘i-u; _ \
| 4 4(9) 0 3 " o
T = 4, +Yq N
27 =4 T 4 o —1——1°
eke .
o o
B‘é "‘SP&"HW\ e wal Yot E‘-. U, = U,:U*‘:--,); n
‘h«-s lase .
2 d
The Grichiom QAG“W (eq_n. (7.34)) s =f'z\,’_ re
but uw—_',‘gz_u[\,(’- So: ‘gpu‘wq - 20t
M -Zu
(3)(3)
£ Re, = 22202 = 8y

This Comfu%m Cerm \oe rc)aue v laracr N
Coo smallar AX's.) AZ=F cam in Cack- S+ 1\ Ve
Aone \m(;y hamd with the resuld That FRe = 69.424 .

©

teo = Tke col‘re.c’\. answer, awer\

«S:Rza 80 | w 1.20],s 56.8.

6o I accurate

40 |

2 | T4 \ooks \l&e
\ \ ) \ . . . AT should be

oi 2Z 3 4 5 66 1T 8 9 less thaw \[S

N
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PrOBLEM 7.51 Consider the water-cooled annular resistor of Problem 2.49 (Fig. 2.24). The
resistor is 1 m long and dissipates 9.4 kW. Water enters the inner pipe at 47 °C with a mass flow rate
of 0.39 kg/s. The water passes through the inner pipe, then reverses direction and flows through
the outer annular passage, counter to the inside stream.

a) Determine the bulk temperature of water leaving the outer passage.

b) Solve Problem 2.49 if you have not already done so. Compare the thermal resistances
between the resistor and each water stream, R; and R,,.

c) Use the thermal resistances to form differential equations for the streamwise (x-direction)
variation of the inside and outside bulk temperatures (7}, and 7} ;) and an equation the local
resistor temperature. Use your equations to obtain an equation for 7, — 7} ; as a function
of x.

d) Sketch qualitatively the distributions of bulk temperature for both passages and for the resistor.
Discuss the size of: the difference between the resistor and the bulk temperatures; and overall
temperature rise of each stream. Does the resistor temperature change much from one end
to the other?

e) Your boss suggests roughening the inside surface of the pipe to an equivalent sand-grain
roughness of 500 um. Would this change lower the resistor temperature significantly?

f) If the outlet water pressure is 1 bar, will the water boil? Hint: See Problem 2.48.

g) Solve your equations from part (c) to find 7 ;(x) and 7, (x). Arrange your results in terms
of NTU, = 1/(mcpR,) and NTU; = 1/(#ic,R;). Considering the size of these parameters,
assess the approximation that 7, is constant in x.

SOLUTION
a) The answer follows directly from the 15t Law, Q = ric, (Tb,out —Tpin):

ATy, = Q/(mcp) =9400/(0.39 - 4180) = 5.77 °C
$0 Tpout =47 +5.77 = 52.8 °C.
b) The inside thermal resistance, R; = 3.69 X 1072 K/W, is 23% greater than the outside
resistance, R, = 3.00 x 1072 K/W.

C) With €qn. (7-10)’ putting (pr)inside = (Tr - Tb,i)/RiL and (QwP)outside = (Tr - Tb,o)/RoL
where the tube length is L = 1 m:

P dx R;L
dTb 0 T, =Ty,
-1 L ’ 2
My R,L @)

Recalling the solution of Problem 4.29, we can divide the resistance equation by L to obtain
a local result (assuming that / is equal to / along the entire passage):

T, -T,; T,-T,
r b +— o _ g = constant 3)
R;L R,L L
Each of 7} ;, T} », and 7} are functions of x.
By adding eqn. (1) to eqn. (2), and then using eqn. (3),

d(Tpo —Tp,) _0

P dx L
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and integrating (with 7 , = Tj; at x = L), we find

Tpo—Tp; = %(1 —-x/L) “4)
P

d) From working part (a) and Problem 2.49, we already know that the resistor will be much
hotter than the water on either side (194 °C at the end where the water enters and exits). At
any point, 7, — T, > Ty, — Tp;, so that T, — Tp,; =~ T, — T, , ~ constant, along the entire
passage. From eqns. (1) and (2), then, the bulk temperature of each stream has a nearly
straight line variation in x, but the outer passage temperature rises a bit faster because the
thermal resistance on that side is lower. Similarly, eqn. (3) shows that the resistor temperature
varies by no more than do the bulk temperatures.

e) Your solution to Problem 2.49 shows that the epoxy layers provide the dominant thermal
resistance on each side. Roughness will make the convection resistance smaller, but con-
vection resistance is only about 10% of the overall resistance. Your boss’s idea will add
cost and pressure drop, but it won’t lower the resistor temperature much. (Suggestion: Find
a diplomatic way to tell him that.)

f) The water will not boil if the highest temperature of the epoxy is below Ty,. The hottest
point for the epoxy is in the outlet stream at the exit (where the bulk temperature is greatest).
From the solution to Problem 2.49, using the voltage divider relation from Problem 2.48,

Reonv 0.00307

= (194 -52.8
Routside ( ) 0.0300

Tepoxy - Tb,outlet = (Tr - Tb,outlet) =144K

The water will not boil.

g) Rearranging eqn. (3) with eqn. (4):

R; R;
T, =Ty, + (T, - Tb,i)R— =0OR;, — (Tp,, — Tb,i)R_

o o

Ri\ _ ., OR
(=T 1+ 1) = 0= 2201 /1)

0 Cplip

S M

R +R (1 —x/L)] (5)

mcyR,
From eqn. (3), we may estimate that QR; ~ (T, — Tp;)/2; thus, we can see that the second
term on the right is very small and could be neglected entirely.

Upon substituting eqn. (5) into eqn. (1) we have:

dTy; 0 R, R
(R0+R,-)[1 n'w,,Ro(l x/L)]

ey dx L

Integration gives:

Tb,i(x)—Tb,in=.£( R )[i—;(f—i)]

mcy \Ro + R; | |L  mcyR,

Because the second term in the square brackets is small, we see that the bulk temperature has
an essentially straight line variation.
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More precisely, we may think of this arrangement as a heat exchanger, where UA = 1/R,,
so that
UA 1 1
NTU, = — = — =
mc, mcyR,  (3.00 % 1072)(0.39)(4180)
From Chapter 3, we recall that a heat exchanger with very low NTU causes very little change
in the temperature of the streams, as is the case here. Putting our result in terms of the outside

and inside NTUs:

=0.020« 1

2
Tb,i(x)—Tb,m=(QR,~)NTUi( Ko )[f—NTUO(f - ) ©6)

R,+R;||L L 212

Substituting eqn. (6) into eqn. (5):

R, X X X x?
T, —Tpin = (OR))| =———|{1-NT (1—— — NTU;| = - NT - - —
b,in (Q l)(R0+Rl'){ Uo L) UI[L UO(L ZLZ)]}

Since NTU; has a similar value to NTU,, the resistor temperature is indeed nearly constant,
with variations on the order of NTUg, = 0.02.

232¢
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8.1 Show that TI; is equivalent to PrRe2/Ja.

ﬂf Ve/oq 4’4:&4 ‘/1'¢ laua/&u:m 14-//\ Wou/a/ I'C"-J 1~ [nee ﬁ// 74/024
a characteristic /eU,H, s 1/373./9),\//# . Leds call 4 his Uy

Themn :
f‘//)«‘ /09)31'& - p ug b, -
/u L (5‘.4 ‘I,,) FZS k (qu;-T,.)

U}Lz ZJ‘ l"#s —Rel Pe =

ERN i S B

8.2 For the figure shown, Plot

§ and h X=O2m—
an Vs, X
Tdv, ’Z?‘t avh
T and u vs. Yy Pezonn J ZD°C)
B = \SLerts® b
from eqns. (8.24) & (8.27) k’:””"“‘
| Y. T o o
5 =497 % /RAAA. ) N":’ 6.3773 2“‘* = 0.00933 x=0 J
h, = 0.069%6 Ray /x
and g a_ 19'6(6.06‘5‘53)(“0 "]V4 x’/":‘g' ,‘;/4
X (I Sth (lo)")z' u gt
o= | D ‘%'(“ T)
l\" 1333
/—l ka “L: C $
= P PofiT(,, oViod)”
" Ya - b.o255x ™ W A 3(0962«?,) T
u@-)‘ 2 .208 /s
L AT(0) . V"
S6 Uu=120% O 01104 (‘- o.o1T04,
. \ 6 com oS b— (0 }— 2
.‘ 1 i A i A -—
S g M i ond 8T=T-To=140 22—
m-C
< Av=T-20
"
ol— o0 — =Y
o o L% Ye=
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8.3 Re-do the Squire-Eckert analysis neglecting inertia.

Omitting the inertial terms form the momentum equation,
we reduce the equation after equation (8.20) to:

o= 3-c¢, o €, =1/3

e%“' (8-22) 15 uu(,\«amyjj S we V)u-’r~ ‘\"4-3 C, Ry :‘»%3}1‘1’

4 240 57 ~1/4
® ‘m* 5 %:3.93(.Ro./

% Ve
Nux = Z’_i)- = O0,50% an

They s e.(ar.H:S He Sg‘_utrc—Ecku-‘: rasullb (‘w Pr 4 .

8.4 Predict Nux, using

- T
an integral method —— T U,
and the assumed “
profiles shown:
t l
® ' % o i3 ‘-zg%
T-Teo - Y u Y Y2
T="% T T 2F 0 %S5
= 30-%) 5 3%

Thos: A ez ([P ‘s 21y 'y 3Ju
B AN EY TR TR ST BT SRR =
' ;

=1/3

u

so: -\3' g—xc&“:m,) = 3?5‘8 - 3’52"”‘ mow. eﬁn,

amd the &ue.r%j eq‘uu-hc» gwe.s'.
4 BBy g L 36,9y | - o« AV
ax SU‘A‘AT 03—5-(_" -5')4(-5‘) * '/3&(‘~ 5) ’g = & T
- )

——
= \5/5*
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8.4 (continued )

or _FS;_ d(:inau\ = 3%_ enevqy ean.
But Upax = C,Sz so the mom. € en eq_ns beccrre
4
AT G qpAT 36;5().!.
e R e o)
. s 3 a A = o or %42&-‘;‘.
ey % e £
4 : . JpAT so:
E%ua"\ws ‘\-\\esc eq,W& cbf g, we 35*' . C\ = C«("r*%) ’ e

V/a
S . A 24«6 o 2 ~1/4 (P a2i3
;'[5 Epm-,u(?r*s) = 2.311Ra, ("r’,
4T Pe /e e
d = S S LA —
an Nu, = - &x = % 0432(‘,“,3) Ra,
6.5
o.4 .r'ln.n}u\ar approximahons above -- accura¥e
Nuyx Wit 15 %,
R* o Ya
RAV* ° 3 - : . P"
% Sq_. tck 0.50% Frasant
.7 P~
o0 P~
o | | |
0.\ 1 10 100 1600 Pr
CTau-: ZSZ)

We know that l\\u = 0. 52?»

-

Ko

wheee T 2200)ewm=0.4m. les(,* T=303°C)

LW o522 ( pAT(0.4) )V" ,% ozcss‘ 3 (10)(0.4)
0Am\ S i .59¢)(2.29¢)
- w
°r k = 3.00 mi-°C. -
T w 4 v »m w .
omd Q = WAAT = 3 k3 G 0 = 24.0 —
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8.6 Heat heat flux fEDm a 3 m high electrically heated panel in
a wall is 75 W/m< in an 18°C room. What is the average
temperature of the panel? What is the temperature at the

top? —- at the bottom?
- wW
%w‘ 13;'-'“ K
R * . 9p ﬂ,,,,l- (9 3/[2131—(15))@5)(3 ) o
} “L \ o o 0.62¢14 (15.60) (2203)
4
4
v

— '
whare Lo assuma m'ﬁ-ﬁn)/l =300, The. R,

L = 2- Z v ‘0‘3
*
0.61 [, . 0.6 (282
i o. ‘197.)3"6]4/9 ( (oq’z)a’s)‘?/ﬁ =2z L\u ‘oo, c-.vuu
10%
= 276

q—w L 7 '(J

7h DT = = . I5(D
= Nuo e 7 29¢ (o214) 312

This gq1res Tw = 319.5K avd wa agsSumad 309 °C ITL we
acc&#‘\- s as cloce em.,._.z,(‘

—

T, = IB+312= 491°0 —=

omd  Swmee Mvu’ l'avea.}; Y 8 4 mu

- d/ntz Va/ue AR, ,L,
F‘\x 8.9 a,.,ﬂ w([k: / ;/6
49.2

T 98706 | C=5C.5

So AT = Se.Su/)’s

Py

ab Mo leadia ed AT = S6S x0 =0 T =189 ~=
3 }q ¥=0

ab e Jrov, AT:= 5¢.5°C I;ﬂ:SGS‘t-t
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8.7 Find pipe diameters and wall temperatures for which the film
condensation heat transfer coefficients given in Table 1.1
are valid.

We must make some assumptions here since there are many

circumstances under which these values would be obtainable.
Let us take p = 1 atm. Then:

‘g:l?f wa-\-f.r:

N

k
22517,600 J/ky Co= 4.219< 10 J

"y E)
<) 5.577 ky/w®

f"" -~ 957'2 ‘e

k" = 0.681\ W/m-°C

/M(’ = 0.000273 k,/h-."

"ur \)enzeuc: Tsay = 6R°C Note *o \-\s—\-ruc\'ur:

hf—g = 407 000 r These /}rofer-hes

S = VDL ave notlavailable 17

f = 927 the tect. The stadot
i st g0 Fo comventhons

kc =0l Aatn JSources 4o obtam
{ 0.000 365 +haw,

c.‘, —=\1.74 =10

Va '/a-
T Pi e -0adq e . Cp_
R = o fadmabe Pl )

VA
(S co0 = 3‘573(“‘0'00\87‘&1) ‘{—N waYer —
’ DAY

ma—

foe benzene —=

Q av

1700 = 174&(&9_"’_‘3&3_’315'/“'

Some ?oss&:\e solutons :

water ! AT = 2°C , D= 0.043m
AT=6C, D =0.0Zbm
AT =10%C, D =0.0\3m
Venzene:', AT =10°%C, D =0.1'em
AT =15%, D = 0.019 m
AT =ZS°(./ D=0.049w
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8.8 A 0.3 m high plate at 90°C condenses steam at 1 atm.

Change the

height or the temperature to values that will cause the laminar

to turbulent transition to occur at the bottom.

From egn. 8.72), turbulence occurs when:

8

3 3 —
2 2
tu J[3uf/of(pf-pg)g]450 = J(_3vf/g)450

Then, using eqn. (8.56) we get,

Stu  _ Few M0 70.000228
8§30 0.3m ' Tturb - 0.000103
or
Stu =CATturb)1/4 ity = 10 0:000228
550 10°C P 2Turb 0.000103
cm

We can't reach turbulence in a 0.3 cm length by cooling.

> 2, 12
~/13(0.294)21071%/9.81450 = 0.0000228 m

= 240°C

= 7.28 m

}

The

flow would freeze up first. g

8.9 A cool plate spins in a synshronously

rotating vapor, so g(x) = X. Find:NuL
q - st/:"x‘l/3 - 4w2 %
eff X 3
<2/3 J <1/ 34x
o
so:
o (of-o )4m x hf /4
Nu, = ToeaT 3
and ' 1/4
Df-pg)w2k3hfs N
h = 39T = constant = h
Thus ' 1/4
(pf (pf‘Dq)wzhfgL3>
NuL = 0.760 TKAT -
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8.10 For the flow shown, calculate T Tw
8(x>y Nuy,  and Ny &
— X=0
Eqn. (8.55) applies in this case. oo,
We rewrite it as follows: "(.[. )
Ta>T "*
5 AS _ km T PR
A" - ] \" 7 Vﬁpof
/;(f; f,)j ‘3
AR %4 n‘—'S(X)
4 Jx 'L
. — X b
AnJ we \Mk‘af&"w -Hns “SWJ 'HW L-‘« 8("°o>'-$’° : \-Coudeusak

84’-%4 - \(,‘AT,( ' - Ay BT % +S°q}'/4:1
Y LA Sl T
. N -1/4
AT .
Nu, = % :[ }A_ AL 40%)] -
s <
omd L A4k
N ‘
Nug = = oh()dx 50 [4)‘ e +$4}/4
et
fpiTx N =t
- 4 9)9 {q alx c00 ]
=3 4£/MAT j_ (&fh 45 }x-.o

N, = ‘_*_: [(ﬁ (‘/:rﬁiz_s shey t}) (/’4 (P ﬂ)jl‘ts
L L q /AQ 4[;/4AT
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Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V

_ Ape(pe-
\ 3k,~AT

§)

Yahg §°

-—



8.11 Prepare a table of formulas of the form:

h W/m2-9C = Cl4T °Cc/L m3l/4

for natural convection at normal gravity in air and in water
at T, = 27°C. Assume that T, is close to 27°C. Your table

should include results for vertxcal plates, horizontal cyl-

inders, spheres, and possibly additional geometries. Do not
include your calculations.

- 3;} > 2.8 (0.006275) 3 e 3
- AT L = - TL
Rﬂnzo ( 6) “QGZ(D'?ZG)‘\D- 13 ATL 2.231110 &

= (2% 3ss 3 2 947«10" AT
Rao.n- (‘ 1.566(2, 103))([0”") ATL

{

referemc e simph fied formola for W
Conaguro.-\-\ov\ eguwarion ke v o

ve rheal P\o@«e. equ.(8.27) \53([:\'/\.)'/4 \.4\4(AT/L.§V4'

horzental c«a\. egrn.(s.zg 109 (a1/974| 1.01 (aT/0)Y4

(reylect leud comstr.
resinet 4o larqer
Uo\ues of KQD)

S?Mcrc W (8.32) l(>\(L§‘\‘/I))\/‘+ l-”(AT/DI/q.

(nealect lead st
g'h'lc_‘F-l-p lavg -

2
er Rag’s.)

other situshon where , s ATP@
Nu = C Rap c(ZSS)(%@ c(259(F)

8.12 For what value of the Prandtl number is the condition:

2y _ PgaT

Y2 y=0 14

satisfied exactly in the Squire-Eckert b.1. solution?

In the context of eqn. (8.19) we saw that Cy must be
1/4; but eqn. (8.23) tells us that:

Pr 1
Cl = = z
[ 4 +
o 3¢2¢ + Pr)
20
— + Pr = — Pr
21
Solving this, we obtain: Pr = 2.86 -=-—
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PROBLEM 8.13  The side wall of a house is 10 m in height. The overall heat transfer coefficient
between the interior air and the exterior surface is 2.5 W/m?K. On a cold, still winter night
Toutside = =30 °C and Tinside air = 25 °C. What is /i¢ony 0n the exterior wall of the house if € = 0.9?
Is external convection laminar or turbulent?

SoLuTION  The exterior wall is cooled by both natural convection and thermal radiation.
Both heat transfer coefficients depend on the wall temperature, which is unknown. We may solve
iteratively, starting with a guess for 7,,. We might assume (arbitrarily) that 243 of the temperature
difference occurs across the wall and interior, with Y5 outside, so that 7,, ~ (25 + 30)/3 — 30 =
—11.7°C = 261.45 K. We may take properties of air at Ty ~ 250 K, to avoid interpolating Table A.6:

PROPERTIES OF AIR AT 250 K

thermal conductivity k 0.0226 W/m-K
thermal diffusivity a 1.59x107° m%s
kinematic viscosity v 1.135x 107 m?%/s
Prandtl number Pr 0.715

The next step is to find the Rayleigh number so that we may determine whether to use a correlation
for laminar or turbulent flow. With g = 1/Ty = 1/(250) K-

_ gB(Ty — Tousiae) L (9.806)(—11.7 +30)(10°)
B va ~(250)(1.59)(1.135)(10-10)

Since, Ra; > 10°, we use eqn. (8.13b) to find mL:

2
0.387 Ra,’°
[1+(0.492/Pr)o/16] ¥/

=3.98 x 10'?

RaL

Nu; = {0.825 +

2
1241/6
:{0.82“ 0.387(3.98 x 10'2) } .

[1+(0.492/0.715)9/16] */*7

Hence _ 0.0226

heony = (1738)1—0 =3.927 W/m*K

The radiation heat transfer coefficient, for 7,, = (261.45 +243.15)/2 = 252.30 K, is
heaq = 40T = 4(0.9)(5.6704 x 107%)(252.30)* = 3.278 W/m*K

The revised estimate of the wall temperature is found by equating the heat loss through the wall
to the heat loss by convection and radiation outside:

(2.5)(25 - T,,) = (3.927 + 3.278)(T,, + 30)

so that 7}, = —15.8 °C, which is somewhat lower than our estimate. We may repeat the calculations
with this new value (without changing the property data) finding Ra; = 3.09 X 10'2, Nu; = 1799,
heony = 4.065 W/m?K, T,, = 250.3 K, and Aryq = 3.201 W/m?K. Then

(2.5)(25 = T,)) = (4.065 +3.201)(T,, + 30)

so that 7, = —15.9 °C. Further iteration is not needed. Since the film temperature is very close to
250 K, we do not need to update the property data.

To summarize the final answer, cony = 4.07 W/m2K and most of the boundary layer is turbulent.
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8.14 Plot Tgheet ¥S. time for Ex. B.2, if the sheets are 1 %
carbon, 5 m long and &mm thick (w = 0.003 m). The bath is
water at 40°C and the sheets are introduced at 18°9C,
Compare the result with exponential response.

With reference to Example B8.2, with properties evaluated at
(&0 + BO) /2, or 39°C:

as1ra.db 1.568(6.61) 1o~ 2 =148

] = ezs3 ( 446 Y4(a.80.00031102° 774 W
define B Z0.678°% :-.- L .} 28(0.000371 :l o 514

T‘n&- : = + -4

— 1 =
= GD-qu va ¥ 4o a72)Yo003) = Eh

\
~ To303+0.00334%]"

The ex'rne-..ln.d respamse 1s: :__:ﬂ?: - -A/T

e T= }0__*-'-1 : 7801 (473)(w)

= h 5 - » k
LA B(39-13)" NMsec . T=(0-42 exp(-0.0314 )

(Continued, next page)
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8.14 (continu eA)

GO
exact T

50

40

/' whicdh” W s
/ unAer?r“eJt&eJ.

+temperature of e sheet , T (°C)

———- Qx?o‘nemka\
an(&)‘IMQ{"M

—— — —
——

eI T—
- romqg in w\ncL \'\ v S
ov redicked by tme

exyovenbial a i —

obion . (The ?mJtckA
warw\né \$ ""Do -‘gs*)
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PrROBLEM 8.15 In eqn. (8.7), we linearized the temperature dependence of the density differ-
ence. Suppose that a wall at temperature T, sits in water at 7o, = 7 °C. Use the data in Table A.3
to plot |py — peol and |—prBr (T — Teo)| for 7 °C < T,, < 100 °C, where (..)r is a value at the film
temperature. How well does the linearization work?

SoLuTiON  With values from Table A.3, we may perform the indicated calculations and make
the plot. The linearization is accurate to within 10% for temperature differences up to 40 °C, and
within 13% over the entire range.

Properties of water from Table A.3

T [OC] P [kg/m3] B [K_l] (Pw = Poo)  —pBr (T — To)

7 999.9 0.0000436 0.0 0.000
12 999.5 0.000112 -0.4 -0.389
17 998.8 0.000172 -1.1 -1.08
22 997.8 0.000226 -2.1 -2.02
27 996.5 0.000275 -3.4 -3.18
32 995.0 0.000319 -4.9 -4.52
37 993.3 0.000361 -6.6 -6.05
47 989.3 0.000436 -10.6 -9.54
67 979.5 0.000565 -20.4 -18.1
87 967.4 0.000679 -32.5 -28.4

100 958.3 0.000751 —41.6 -36.2

— 0 pBi(Tw — Teo) =
- Py — Pol

Density difference, p., — p,, [ka/m’]

90 100
Temperature difference, Ty, — Too [K]

aooo
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8.16 A 779C vertical wall heats air at 27°C. Find Ray_,
and L, where the line in Fig. 8.3 ceases to be str‘algh@
Comment on the implications of your results.

The line in Fig. 8.3 begins to deviate from straightness,
and flatten out, when:

.49 \/ey-1.1118 3
R“t.i”’f Pr ) _} = |0

But f~ T = 32¢ K., PrzOWES | So Ra,_ = 2334 ~

(Tha resuli could reasonably
romag £roa 10> H 104 )

but 9BATL _ 9.3(355)S0 3
= 2884 = < - 2(Fss
Ea‘- s a4 (2.561)18'°
L= 0.00936 s = 6,936 ¢, ==
Find %___Et
R I T
Nu’()x-n_‘ 2 % S N
Sep . 8
. 3Nu,
)
bat Nu =0.6%+0.67 Ratc* = ~
) " ' [1(0as )78 063+06.1(1%) = 445
H(—FT') ]
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8.16 (continued)

TL\US , )(-.053(:(\

/
/

/

e

VP PA P ID PP 7P PPPPT

<
[

%10.55 (45N

dop - 2 —
=2 = - = 0.60

L 3(449) —_—
The b.l1. looks something

like this —— quite thick.
Thus the deviation from
the linear relationship
reflects the breakdown of
the b.1. assumptions.

8.17 A horizontal 0.08 m diameter pipe, at 150°C on the inside,

bas 8%

heat loss if T, = 17°9C?

% magnesia insulation with a 0.11 0.D.

What is the

First we have_to guess the outside temperature to evaluate

properties.

h on the outside should be low —— around

b W/m<-9C so we go to equation (2.25) and calculate

AT So-11
Q= T : = X
— folVi \ + .Q..fo.OSS/a.o‘\) )
athfy, 20 k 21 (¢)(0.655) —;m
L"Df %b?o ma,
- Q. 11\ _ -
“m£w€ A.T acioss L= P (D) - 6 (TYou) =53.5 / Tou%zde maa"— 70.5 °c

we thew evaluake &')ro()erhes

at @_‘_"_—:_ 449 v 3V1°K

1)
Thew - 1/a 2 (0. r-n)(o.n)-s] /a
20 [ 1.735(2.447) 1o~ *° : 3o
Al 0.559 9m. a9 =~ 7°
0513) } [l*(O'uo ]
_}\T‘ =0.3+ 098 = 9.5 N l“)Soc‘Z"4 - —_—
up b+ 0.518(36.2 ) h=95=07r = 463
— 99.3 °
This wes am oubside '\—&w\? of m’z 1°C . 1+ S‘nouw

70.5 -\1

subbice ¥ correct the Rﬂu}\e\J\« no . laa a fuctor 4&[620 \1

or 0.958, Then N wl\ becoma 444 \W/w™~C  Lhich we

s\\a\\ use |

Cl.‘ \

1S6-11 1733 1 W
= - —— e
0,..(0 0‘)5)/(0 O‘\) 0:652-“'0-,”4' 3 m
44%2n )(o.os€) 2T (0.011)
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8.18 How much heat is needed to keep a horizontal wire, 1075 @ in
diam., at 409C in 109C water.

. o 0.51% 9p8ATD3 7%
eqn. (8.28): ]\\ub- 6.3¢ + . (;.ss‘e)%“/ﬁ [_%?_]
?

"
)\ 6. C 9.8(0.00021)(30) 15 '

1.454 (o.ae5) x '®""?

w\‘)M wh- evn‘uastt rrofOf\'lrs at 29%°¢

—_ w
h = iqu = £:6957 p4339 = 26,249
o 0.00001 m:eC

w
Se Q= WWD AT = 2¢,265(n)i65(3e> = 24.8 oy ~+—

8.19 A 20 cm vertical run of 0.5 cm diam. tubing carries condens-

ing vapor at &609C, The air outside is at 279C. What is the
heat loss?

Neglect the resistance of the tubing and of heond.. They
aren’‘t specified, and they would have to be small.

First treat the tube like a vertical wall, ®(0.005 m) wide
and 0.2 m high. From equation(8.13a), us1ng T = 316.5:

V4 96 - - 4
- qpATL> [ (0.4915 ]
Nu, < o.e%+o.e1[_%}__ 1+

N 14 0.56259-444
0.8 +O.61[9-3(3°o)33(01) ] (! o.qsz) j - 3.

1.402(2.44) n (0~ 'O (5709
Tk ~ 6.0273) W
L = tU“t_ 7;“37"| = 5.06 — 1 o

Now we wust correcL ‘(:w curvature usmj :) (8.7)

2 Lo 24z (0.2)

- 2'33 So de"uAJ\ - \'%

(Ra /Pe)+ R 17,22 (0.0025) ) . oy
Twe actuad value o“ -\:\ s .9 (5.00) = 2. )I:\/.:loc P |

e heat Voss s KAATe 3,[|Cﬂ[o.oo5)(alﬂ(33) = 0.944AW —-
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8.20 How much heat is removed
from the body shown.

_ 025 m
—_— \ ST e
Nut = 0.52 Rﬂ(_{4 Cos (to' 3%
=0.2693 m

3
| 14
20'5219,3 355 20 (0.2693) ]

~jo
1.411(2.672) < |0 evaluake prop-

erhes alk %
= 42.5

- 0.02536
= 42.§ =——= = 4 00
h 0.2653 m-C

So -

The area 63 Pe cona 15 2 <(‘z G)EfNMC‘V ol Lase)(ld—e«l eAy)

= .‘2_'3_2-‘:;?—3— W0 = 0.0423 nm &

se A= hALNT = 4(6.0623)(20) = 328 W-
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ProBLEM 8.22  You are asked to design a vertical wall panel heater, 1.5 m high, for a dwelling.
What should the heat flux be if no part of the wall should exceed 33 °C? How much heat goes to the
room if the panel is 7 m wide with £ = 0.7? Hint: Natural convection removes only about 200 W
depending on what room temperature you assume.

Dssume Voo = 23%C  (734°F) as a maximunm value, The AE:{ Lo°C.
From Fla, 8.9 ) AT,“A! = 10% aives Zi' = 0.¥3%¢10 T B.33°C .

To c}a." WG must aew golve egn. (8.43a) Ls el and @ Frov:

44
kA - O'Gx(—"__—') = koS o
T LAT 5/ 4/9
0491) J
Ewluake !m‘;u-‘\es at 2%°C 2 300°X. so
{
- 9.3 15" 4 o “
[2¢ 828 A9 296 = 1o
9,5 . (‘l-w Ny \ . o.026\A(1.5¢6)(2.20D)
50204 (8.33) -0,6% cowia@33) i\ +C'491 0.562% 10.4‘\4...
0.1 )

of 0.2% 0.25

n. 161 —lloz‘h = 1204,
or

16 Gu = 190 5o Q.7 17,12 \ﬁ%
w
T 117,12 wW
. = > 205 — .

(Tlus cOrre:fwoLc wirh b 8.33 S mec )
s Q= 4, A= 1102009)(1) = 180 W -

Since the wall temperature is known, the radiation loss can be computed separately because 7,
does not change much along the length of the wall:

Ty = (Too + Twan) /2 = (23 + 23+ 8.33) /2 + 273.15 = 300.3 K
and then
Grad = huad T (Tl — Too) = 4(0.7)(5.670 x 107%) (300.3)*(8.33) = 35.8 W/m?

Thus, radiation carrics an additional (35.8)(1.5)(7) = 376 W, for a total panel heating power of
376 + 180 = 556 W.

8.23 A 0.14 cm high wall is heated by condensation of steam at
one atm. What will happen to h and @ if the steam is
replaced with an organic vapor?

LS AN 28
_V\ \( f’ (P° 13__.‘") heg
= ° /; fg ﬁs \\4.5, 4+ © (,1-; T»3}

Mo ko Ts, Tw
3o ¥
Hs ke Tsy - Tw

We can p robably neqlect ob Aobu and the Cp(Ts‘Tw)/kca Yerms will
Con\'nbuk LWH e, a—k 5/19

- ?
-2 ~ C__ BA T° ~Tw 1Ss ﬁ_ lu. 4—_‘
g T,O—T,. J, fe DYy sl
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8.23 (continued) Finally, since @ = hA(T, - Tyt

Y
Qo . (_k:_ Tt )’/“(755 Po iy 3"’ -
Qs k‘ BS-T\U 'Ja f‘ h{'ﬂs

-

These expressions give the factors by which h and @ will
change, once the instructor specifies the particular fluid.
The student should remember that T sats @5 well as the other
thermal properties, will change when the fluid is changed.

8.24 A 0.01 m diam. tube, 0.27 m long, runs horizontally through
saturated steam. Plot @ vs. Tiube for SO < Tiube ¥ 150°cC.

For matural eemvectiom | em‘mhna rrora,el—ncs al Bireo _u0 0 390K

- 9.8(0.0029) O. OI
0 (2,26 5‘)(2'200/010 AT = 56.3 AT

300 Ny = 036 2S1BRD 5ol qqau7”

D + (o s‘ss 9/:(.14/9

\— Loz
And for bl condomsabon, heg = 2,25 u10 1+ (0683-3:222) ] = 2.25700% (1- 0.001 a0,
SO we can use an average value (for AT=25%) of 2,313,000
N .. p3%A 3)@2.313)7
R [ S o
P Ui e (T .17 (.63 AT
-‘\-) 426
—_ b = -
Nup Q= -‘5— Nup AAT p v
036+ | 420 4 —
A"‘OC L 12aT% W :l:'v‘;::'h’(o.v)t&u, iy}
$0 334 [ — |G 28 W 2 3
40 3.19 - i3 2.50 :
30 2.99 - & 1.9 3
20 2.72 - s ).07¢ v o2
10 237 | - | O 6.463 F
-10 — 240 '<li.. ~1339 W s L
- 20 - 201 |12 -2337 V]
-30 - 152 ‘g) - 3161 .
- 40 —_ 169 | o - 3930 lo) = o
g0 | — lwo | O -4 3 Lube
g‘ - 1000
Neotice Hhak ; -+ - 2000
Q °“J >> QCOD\V 5 - 3000
Q cond, Vv A’-:/q ‘g
S /4 Y _ 4000
QConv. ~N MY G
- S0 —
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8.25 A plate, 2m high, condenses steam at 1 atm. Calculate AT
at which: a) Nusselt's solution loses accuracy; b) The
film becomes turbulent.

pelp _=p )383 63
r_ = £ — = 4 > = 6 for (a) and 450 for (b)
¢ 3u 3v
5y 173
-6 3r.v
but v = 0.29 x 10 so § = - = 0.00008106 m (a)

0.000342 m (b)

1/4 1/4
5 = |4KATUL — -l . [EEAEQ?::] We'll go back
Pelpg-pyla £q Ped fq & use hy if

9
AT is large.

Now:

-6 |1/4
_[4(0.6811) (0.29)10 '] 14 1/4
'[;58(9.8)2257(10)5 AT = 0.0000782AT

4

(a) 0.00008106 = 0.0000782AT74; AT = 1.15°C ~

when Nusselt's solution
losses accuracy.

(b) 0.000342m = 0.0000782aT7L/%; AT = 366°C

The flow can never become
turbulent. It will

freeze first., =

D=6 cm. At 30°C

8.26 A reflux condenser has « = 18°, 4 = 0.8,
s h? (Evaluate proper-

it condenses steam at 1 atm. What i
ties at 65°C)

PPy CpAT Jan?« _ 979.4-0.6

To use Fig. 8.14, compute: B = =
Pe hf Pr 979.4

4186 (70) tanZ18
3-357,000(1.72)

4a/p 0.8/6 = 0.1333

. \ o ~ ’ «<y3711/4
SO% Nuy = )(pf Pg)g hegld coss) ] «0.72.1
1_ VkAT

= 0.008

/

but L\;‘) = hy, (1 4003 222813 45(‘*@-593*%;5}&)‘ (10113 heg

e 6 (130774186 (100-30) /4
Nu_= 0.727 .8(9.8)2.257(10) 2,257,000/ 008c0s18°) >

- 110 0.435(10) " (0.6585) (100-30)
Then: - _ _k =—— _ 0.6585(110) _ 2
h = Fcos= ML = 0.008 cosls® - 95‘2’m2-°c.
249
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8.27 A 0.05m helix of 0.005 m diam. tubing carries 15°C water
through saturated steam at 1 atm. Specify « and the number
of coils if 6 kg hr of steam are to be condensed.

h1n51de = 600W/m<-

First establish an approximate T wall assuming an ordinate
from Fig. 8.14.

' 3
(p.-p ). g(dcosd)”*
- _k f "g" fg
h o d(T ¢ T ) = - 0.729 (T -T )
con sa w dcos s vk (T -T ) sat w
assumed sat "w
= h, (T _-T,)
ittw i

L}
For openers, call hfq = hfg and cos« = 1. Then:

14

3/4

8.83%1 (cosm)l/4 958(2257000)9 8(0.005)° (100- T, ) = 600(Tw-15)
' 0.29x10 (0.6811)

3/4

77.23(100—Tw) = Tw-15 ; Tw=98.88°C

Now do an accurate computation based on this estimate. Base
properties on Ty = 100°cC:

2
958.3-0.6 4219(18) tan'= _ o qoo o2 o oo d_ 0.1

B = —%553 3,257,000 1.72 - ,

Then from Fig. 9.14 the lead const. = 0.727

So: 0.6811 [?58(2 ,257, 000)9 8(0.005)3 1. 16{}1/4 ~1/a

[e{e}-]
0.005 0.29(10) % (0.6811)
= 600(83.88) (B)

cos /4 = 0.9997, not possible
Pick T = 1.07°C.Then:
e - oe-/4 = 0.9997 83.93(1.116)3/4
¢ - o 83.88\ 1.07/, « = 28° ==
/4 -
So: ¢ _ 1.07 V' "_
h = [LHS of () (1.116 = 47,625 -
m -°C
Then _
fo= o = 1ORIER(AAT _ 6 K9 oo jengtn = 0.783 m
fg fq
Finally:
. _ length _ 0.783cos28°_ -
no, of coils = 7D/coss — ~w(0.05) = 4.4 -
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8.29 What is the maximum speed of air in the natural convection b.l., in

Example 8. 37

fst “mA where U wmaximizes 1a 3/5 us.né eg\_n.(8.18)

db/ued _ . L.y 3\ N 4 )
atys 07 TE ) o (D55 e
Thus: 4 5
.g:-j.:\: 5 4 or = ; %:!3-3\\!9} max

Now uSw\;' M(x) C, ES_T and C': 'P,./3(g7-_$ +P..)

we.g,o}: y =__P_"__..M [__(__)]

Mman  X-)
3(3_—; 'i'P..) 7—‘ %: Li
Usma numb&s £1'>w\ €xa,mr\e-8.3 we obtun :
o.M\ o,oo-sqe@.a)(auo-nq) N
u = - - -5 12\ [ (:5)
max " 305652400 1.S66 = 10

= 0.354 w\/s -
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8.31 A large industrial process requires that water be heated by a large cy frn -
drical heater using natural convection. The water is at 27°C. Tue cg\mder
'$ 5 m in diameter and it is kept at 67°C. First find k. Then
suppose D is doubled (D=10 m). What is the new h? Explain the

similarity of these answers in the turbulent natural convection

regime.
A ( )(e1-21)5”
. 435)(61-21)5
Pr=3.67  4md Ra = 280000 = 244"
" L o.see (1.591) <0777 Lo
So we use egruahu»\(s.zg) tmd obYan :
— 2
= 2.-‘\'4'(“3)‘4 Ve
T\\uL {O,GO t 0'3&'71 [‘+ (),_Eig_)"/lb]lale = 7351
\ 3.67
——— )
143110

- ok )
h= 79507 = 795126387 0 W /nkor o0

s

L L s doubled we have
———— ‘/b )
Nu_ = 0.0+ 6.387( 1.43218% 2*) ] - 13,840

0.6367

)

h = [ 5,840 o = 1009 W/M"- C ~ L= 10w
a\mos¥ “0‘\‘“3‘—

We note Hhat ot \ma)« Ka ) ei\n.(s.29) reduces to:

T 2
Nu, = ‘LE = o281 V3
| - k. E+(o%?)9,(b]l$/9 RQL

PN ETTA R AT

75//) p

So

The 1/3 power dependence of Nu, on Ra; that occurs in turbu-

lent natural convection causes h to be independent of length

in this regime!
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8.32 A vertical jet of liquid, of diameter, d, and moving at velocity,
u_, impinges on a horizontal disc rotating w rad/s. There is no heat
transfer in the system. Develop an expression for 6(r), where r is
the radial coordinate on the disc. Contrast the r dependence of §
with that of a condensing film on a rotating disc and explain the

difference qualitatively.

Mu$5e\\1'> exrresswv\ 'g-ur'H\e mass £|Dw r«.l—e n ")"\12 Lllm [

valid
m E:— = P{-B(-;i__;_-og) j Sir)

Howevew ) 1n This case, /?{_ s tae \\gsuw( A%ﬁ‘l‘j omd Iy 18 He aw Aa‘”s‘b,

. e “‘jﬂwv{j” 1S Now .',Szr . Thew the ‘3‘0/-;-;«\ mass £low 1S

S

- 1]' - . _ ~ 3
M -/,OI. Uy Z;:d 2= m (21’!:‘3 = ‘%‘l [«(-(f}f Ea-r)dzr." g(r)
we SG\VQ this '@W %(r) :

313 z
- ,"_JJ Up 2 ! .
ol)= 8 (ffa..»)“‘l r#®

The film thickness is uniform during condensation on a
rotating disc (see discussion following eqn. (8.70).) be- .
cause condensation causes the film to accrue liquid. Thus m
increases as r2, and this accretion just compensates the
natural thinning that must occur as the sheet spreads.

But in this case, § ~ r—2/3 pecause no fluid is added
as the film spreads out.

8.33 We have seen that, if properties are constant, h ~ atl/4 in
natural convection. If we consider the variation of proper-
ties as T, is increased over T,, will h depend more or less
strongly on AT in air? -— in water?

We see that h in natural convection varies as k/¢(va)>1/4,
We then find that this quantity increases strongly in water
-~ egpecially at lower values of T, —— so h depends more
strongly than as aT1/% on 4T. In the case of air k/(va)l/4
is a constant within * 13 X over the entire range of proper-
ties given in the book. It drops off only slightly with
increasing temperature so the dependency of h on 4T is only
a littie less strong than ati/8 . 1¢ Ty were less than T,
these trends would be reversed.

2595
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



8.34 A film of liquid falls along a vertical plate. It is initially
saturated and it is surrounded by saturated vapor. The film thick-
ness at the top is 60. If wall temperature, Tw’ is slightly above

T derive expressions for §(x), Nux, and xf--the distance at

sat’
which the plate becomes dry. Calculate Xg if the fluid is water at

1atm., if T, = 105°C, and 60 = 0.1 mm.

nga:\wc»\(8.54) s+l apphes, but tue Sign s reversed, thus:
T~ Tsat E ﬁE E zo\%
k w g S - \\+3 clw\ —_ )

Aard | gst
h%(f;'fg)s dx
I“S‘ej‘“‘\"'\j S S(,X-—'O)'-'—So o Sy we 3e.¥ . |

ik?-r SX_ . %j‘ S or Sk = [5:- 4___}5&5 ! ]
([ fdd 2
4

-1/a

-
-

e Nes= 55 [Cg&i :r;:(?:;:)gx]

omd X_,; (s Hie value 6(! X at which Cix) =0

X, = S(JO-F Fﬁ) l‘?q %a

A S AT

Bor e s‘)aung case we set k{ﬂ ~ k‘; ond c‘ye’r

- 9.%(‘3.'5’).2,—o.e.)(gg'),oocv)(o.oaox\)‘f
i 4 (0.6811)(5){(0.290) 15" @

F\d-e wil dra ot when X, = 0.5356 m —
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8.35 In a particular solar collector,dyed water runs down a vertical
plate in a laminar film, with thickness, 60, at the top. The sun's
rays pass through parallel glass plates (see Section 11.6) and deposit
ag W/m2 in the flowing water film. Assume the water to be saturated
at the inlet and the plate behind it to be insulated. Develop an
expression for §(x) as the water evaporates. Develop an expression for
the maximm length of wetted plate, and provide a criterion for the

laminar solution to be valid.

E-q’uu»\"l%\ (8.54) arP\nes 4‘6 s PmHGm , bu.%- we
Mub“' re,flaoe k(TN‘ngA)/S W\H '—%w‘ Thus:,

- - dm - ‘\b(g "E) s
iw L‘-‘Lg'a;‘ - * /5 33 A;%‘

33,3 48
Jk‘ﬂ(ffﬁ?) aAx
L\fﬁm&«.j fam Sx<6)= S. o S we 3&

So!

3g.8% o3 (2 ,
3‘\gj(f{_-f§) %o %() or &1‘)3[80"5 wZSX

The '(\\M will Av:) out at x:x; w\nem S(x£)=o .

- h =P 3

OMA "')US so‘w}tw wo” 0\1) bc_ vahd u:;\&\ \"C’<4ﬂ>. 'ﬂws
We write at the +1>f of ‘HJe_ pla\re:

Q =L o) 8"3 < 450 y 3/ I3s63S
° S(ﬁ

fg)
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8.3 What heat removal flux can be achieved at the surface of a horizontal
0.01 mm diameter electrical resistance wire in still 27°C air if its

melting point is 927°C?

Eua\ua*—e)? at 27% a~d Ye oHer roFE-r*'lﬂs at 693-'1""1")}1,:
or A17C =750°K 1 F=2143307F, or=16.5100)°, 1c=0.054, Pr:0703,
Rao. = 2.80/300) 200 (0. cose)S -t

U&tna Er;*ur:&mn (8.29) -—aFFth[z &'r Ra 3‘1(:"'-- we r}q,:}-

- 3.144 (10)™e (A
MuD 1 {ﬂ.f—+a,53?&+b Eﬁfﬁ".ltg}b LT JI 11;1 } 0.4096

Thew: = —_
hhl\ﬂ%-'

i ©.654
= 04096 3222 - 2212 s

Thus !

Q= 2212(921-21) = 1,990,706 W/mt ==

This is an incredibly high heat flux. Natural convection,
which normally inefficient, becomes remarkably effective
when the diameter is very small.

ProsLeEM 8.37 A 0.03 m O.D. vertical pipe, 3 m in length with £ = 0.7, carries refrigerant

through a 24°C room at low humidity. How much heat does it absorb from the room if the pipe
wall is at 10°C7

s 5
Eoaliiide Fmﬁﬂ.},,, at (0°Cr24%)5 = N°C. 5:21.47100)7, of=2.200(0)
Pr= 0. M3, k=0.0254

= _ o.8(1/297)(24-10)3>
T .Qa‘-- 2.2a701417N0° %"

= = 332600)°

eqn.( g27) ; 0.S625_ - p.944
S 1 o A
‘3[ Nu,_ = 0.6 +0.67 {s,wmc" "[H- %ﬁ?—i‘j ] T 278
Nt plate =228 255 = 1933 W/mbee
- {z 217 3
Correct b curvaturce Using st. BT ES | oo% =
Ra /P i"-‘ﬁ [33:&,{ Yo\Va
i o E S O.'h: ) L
so Weg/hplake = 1:37 omd - e

hegl =1:37 (1933) = 2.65W/m °C

&= T-.“j._ A AT = 2 65(3)mlo.03)(z4-10) = lo.sw

—_— —

But hy = deoT) = 4(0.7)(5.670 x 107%)(17 +273)° = 3.88 W/im’K

Adding the natural convection and thermal radiation heat transfer coefficients, we can compute Q:
O = (Trey + haa) A AT = (2.65 +3.88) (3m)(0.03)(24 — 10) =258 W
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8.38 A1 cm OD tube at 50°C runs horizontally in 20°C air. What is the critical

radius of 85% magnesium insulation on the tube?

Fron e%_n.(z.ﬂ) we have - k

- K ama
GN’I- - :ag 2 %—(-c—
\ ka-r NUD
Z uUs .(8.28) :
= using egn ( D v
P 0.5\& Ragy _ Kma
NUD — O|3B'\‘ 0,559 O,'b"t‘ 4/9 - »Z k e
1+ (232) *

we' 1} evaluste properties at 27°c (T,
we wonk Wave o re -erate,

ey = 34°CY) ? Mcye Yvat

°.51= [9'3 i\?’g ] ) 0,061
4 AT(zQ_ =2 )
[‘ . °. is"\a 0.562% :S /9 1,5¢6 (2.203) L 1 0.020%

3 v
0.36 + 38,83 (RrJAT)* = 3.202

So 2 = 0.0%055/cv/3
Koo (30-087) _ T

o o e = Mes T T - T
Furbharwores E) D (¢, /0.00%) ha

. T - Lain \«ou.f kwg. -_ L
e R R~ G Rl Lo
so: 30 -\ = QM((‘,_/O.OC@) k-gur_ - éz,.) = 0«.(&/000:)

AT e k- may @ ozos'a)

Sse we solve %vr o) bj '\Tw.l‘?‘umv-:

r‘c.

i

0.01745 p, —~=

Al =

’]MS ?furCS .

(o.oaogg/aio,o.ws})s

1)

0.67°C

Thus, we evaluated properties at a temperature 6-1/29C zbove
the right value.

trouble.
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8.40 A horizontal electrical resistance heater, 1 mm in diameter, releases

100 W/m in water at 17°C. What is the wire temperature?
1 L —
wWe Moc\\'(:‘} e.qfnoCB-29),usma Ra, = QqD/NuD , O S,M"

E_ /a’-—olggam[;m: 0.5\ Q‘ D‘r
0.559 0,562 ‘\/9
[ ( > \c':go(‘

Guzms Ts= 3¢ ., The.ul‘,.)\' 21, 15:0,7,2@.,:\0"’_J or =l Aaes! Pe
£ k=0.(o84 , Adag, = 100/n(oo) =3183 w/m

: U2 5 e

. ——5/a Va. 9,2(0,000215)( 31830 oy

Thew Nuy ~6.36\0 ) :0.%%%1 5,32 (L402) 1o~ L 0,600 153

%j ‘\w(‘m& ‘C'( Crror we tap.\‘ mo = V28 /50

=5.65

0.6084
O.00\

W= HO% = )10 = \034 m/\«?-

Q= —\; AAT oo = 103‘\['{1‘{0@011) ST

)
AT = 30.78 °C
So Ty, = 11+ 3019 = 41,73 °C =

The properties should have been evaluated at 32.49C instead
of at 27°C. This is not enough difference to warrant a

recalculation. However, if we did the recalculation we’d
get:

= o
T, = 246.64°C

Which is less than 1°C improvement.
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8.41 Solve Problem 5.39 using the correct formula for the heat transfer

coefficient.

we shall evaluate the PraqueJ o-‘- wa ke o 6’1+2’7)/2 =37°%C

520.656,00)'6 , 9= Lsez(ioy? ., Pr24.6C, k=0.6226, ﬁ 2 0,006355
Then: Ra 2 0716(0.00c¢355)(0.0%)¥ /AT _
R ) 0.638 (I.502) 157V = 69900 AT so ean. (8.29)

e\dst — ,
3 h= \%Nuo =233+ 1045 AT 1% =

This 1s e xactly the value 3"'% in Problen 5.39. Therefore 1+s Solubon
applies were,
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8.43 A 0.25 mm diameter platinum wire, 0.2 m long, is to be held horizontally
at 1035°C. It is black. How much electric power is needed? Is it
legitimate to treat it as a constant wall temperature heater, in calculating
the convective part of the heat transfer? The surroundings are at 20°C

and the surrounding room is virtually black.

Qg * Reony = Mo00025) (c.z)YG(\sog- 297 ) + kg“" Nu, NY]

e ve\uake rm‘oeches ak (ozs«-u)/z T 521.5% ~ BoOO°K,

73- elé(w) -;1‘7?(10) |< 0.05’63/ (’, 20,704

K"b = 2.8(a; \o coo2s (w‘ss—w)
8 26(11Y 107"

~ 59\0/5625 70,4444
NuD - 0.36 » 06:.51% (0. o‘z.)m/tl (05 3) _] = 0.501

= f,0200

T4
56!
' 0. 6569
[es 596 + 2252 o 50| i (p.00025) (0.2 = 44 4W —
\..’ﬁ,___———-’ f———————
111,124
117124

. =L po002S In ether case

BLConv = '°3?-1OE.Q - 0,00 6343 Be << L 90
T. = comst. 1S

B¢ F N m'ﬁtﬁ?fi:(‘o.ooo?_r/gq = 0.0008%9 V\:\l'd.

8.44 A vertical plate, 11.6 m long, condenses saturated steam at one atmosphere.
We want to be sure that the film stays laminar. What is the lowest

allowable plate temperature and what is q at this temperature?

leb us save work b adarhn a resuld Lo E(Mf’leS.G:

Va_ [385m o\
S = 0, 600138 L L’“) - 0,0001432 M /% (3 2 Re,

bovton
&.a.“ e y\_(9.6‘a)
Then uSma Re,= 450 , we 39*'- %
4
N 5@0 zeo)loq =6.23% T = 93,77

AT—[\4,31(10)' ( 3.2 430) } E— Y owes ———C‘
£ 5 -4 kDT 4 6.237Y%
T9=1 Toeer bl 25004 W/mt ==
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8.4% a) Show Yhat @ Tm’Li@‘;/q '('av P s-‘m- “— Cm I na'\vml comvechim.
f )

h) develop am Hecahve method hy solve Hho eq_uahwa::umn an
tasulaled -\-i? . .J
€) Selwe the N’Su('\'m_x) 4 £ leance egiua"-uws.

a) W‘H NN MG"IQ ’ .h = Ia t(T-TQ)/(TO- ~)15/4 WLM Tlo [ -l:l 4"’ T‘—Ta .
ﬁTl‘e tvem @ f}t“‘*-|““ ‘k Hows 1 “‘P¢415;11;‘:) ’{;vVu (25}]\: (‘\-EwC;) zlaaex J'hCL

substa nent now-dimonsimalisahion -

b) USmj centul Oll{Leff'mr—f-f for He seeond &'wwahaej we have
8" - fzr w55 (61 1B 1 8! = 0

[

k.
® = 1o

20 - 2+ Wi se' (@) 1@, - 0

f\—o .su??ress wn#—w-ai meeclnm\l we CLMZA Hie exrme\} ;!T P ‘l‘u -’éem) -

c) Sa,.\?\e au’l’fu“‘ Lo o BASIC prvﬁl‘w Mok solves Yhese e%_uahws (s
awﬁv\ helow. The Prodfm\ d—se[( 1S  o&m ’H\e nexL razx.

Fin with natural convection heat exchange Fin with natural convection heat exchange
Natural convection suppressed
mL= 1
L= 1 R= .000218334308
R= © Number of iterations is S

Number of iterations is 2

Step size is X1/L= .02
Step size is X1/L= ,02 Efficiency= .728340253762
Efficiency= .761625234908

1.0

: nafuvad convection
e Suf/:vrc.r,'fea/

ml = /.0
7/7°= 075'6

g 1.0
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8.45 (continued)

This old solution was carried out on an HP-85 calulator.
Today we would certainly use more a more modern means
of calculation.

10 ' "FIN WITH NATURAL CONVECTION HEAT EXCHANGE"
20 ' To=temp from previous iteration;Ti=temp from current iterationg
0 ' A.B,C.R are coefficients in the difference equations
40 ' D 1s an intermediate value in the tridiagonal algorithm.
SO DIM TO(Z00), T1(200) ,B(200)

6O DIM A(Z00) ,C(200) ,D(200) ,R(200)

70 ' N 13 the number of spatial units

80 DISF "ENTER (ml),N"

90 INFUT AI.N

100 ¢ E! t. the min. sum of ABS(TI1(I)-TO(I))
110 E1=,0001%N/10

120 X1=1/N

130 D=AlaX1"2

140 Z=0

1S5S0 FOR I=2 TO N

160 A(I)=1 @ R(I)=—(2+D) @ C(I)=1 @ R(I)=0
170 T1(D)=1 @ To(I)=1

180 NEXT 1

190 N1=0

200 AML)=0 @ CN)=0 @ AN)=2

210 R(1)=-1

270 N1=Ni+1

230 R(1)=-1

240 FOR I=2 TO N

250 R(I)=0

260 NEXT 1

270 GOSUE 400

280 R=0

290 FOR I=1 TO N

J00 R=R+ARS(TI(I)-TO(I))

310 ! Z=0 suppresses natural convection

320 TO(I)=T1(I)

330 IF Z=0 THEN GOTO 350

T840 B(I)=—(2+A18X1"23SAR(SAR(TI(1))))

380 !

260 NEXT I

370 DISP "R=";R

8¢ IF R<E1l THEN DISP "R="3;R @ GOSUB 580
390 GOTO 200

400 ¢ Traidiagonal algorithm

410 FOR I=0 TO N

420 T1(I)=TQ(I)

430 NEXT 1

440 N2=N-1

450 D(1)=C(1)/B(1)

460 R(1)=R(1)/B(1)

470 FOR 1=2 TO N

480 D(I1)=K(1)/A(1)=D(I-1)

490 R(I)=(R(I}/A(I)-R(I-1))/D(I)

S00 D(IN=C(I)/A(I)/D(I)

S10 NEXT I

S20 T1IN) =R(N)

S30 FOR 1=2 TO N

S40 11=N+1-1

S50 TI(I1)=R(I1)-D(I1)XTL1(I1+1)

S60 NEXT [

S70 RETURN

580 PRINT

590 FRINT “Fin with natural convection heat exchange"
600 IF Z=0 THEN PRINT “Natural convection suppressed"
610 FRINT @ PRINT “mL="jAl

620 FRINT "R="3;R

630 FRINT "Number of iterations is"jNi

640 FRINT

&S50 FRINT “"Step size is X1/L="jX1

660 F=0

670 FOR I=0 TO N

680 1IF Z=1 THEN F=F+T1(I)"1.25

490 IF Z=0 THEN F=2F+T1(I)

700 NEXT 1

710 IF ZI=1 THEN F=F=(T1(0)"1.25+T1(N)"~1,25)/2
720 IF Z=0 THEN F=F-(T1(0)+T1(N))/2

730 F=Fix}

740 PRINT “Efficiency=";F Note :

750 SCALE 0,1,0,1 . .

760 XAXIS O,.1 7he d/,één'ncc c ae'floag ave
770 YAXI3 O,.1 . j

780 MOVE 0,1 writlen as

790 FOR I=1 TO N

800 IDRAW X1,T1(1)-T1(I-1)

B10 NEXT I Ac. 9‘. -f,B‘:é' + C; 6‘_- ,= R.
820 GRAFH -1 4 * A
820 IF 7=0 THEN 2=1 @ GOTO 150

835 COPY

840 END
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L&

0.4¢ -

o

0.54

0,71, -

Notes:
Q) Thec maximuwum heat '/raws,/cr
occury Nncar Yhe "647‘ wflcrc
hz by, Hence the macimuwm

reduct/on in 7 /s on/7 é %.

2) 85 = 0.0/ is jubfa sati's facto.
/'or milte 100, ad 85 = 0.005 s
reo w.lvamdfllcndu-S‘ J
m‘(.‘?

a (000, J; :o.o/‘
3) 6Y = m's tova can busoloed exact! 3
Sor ml s Llet 5 = 5/ml. Then 5{-:0.00:
we have

dle _ %

g5 -

Wu/r’:}té bofh e1des 57 2‘{%3’ aud in'/cjraﬁ‘o Furce To ye"‘

Zy 7-8 . ¥ 207 _
6=/ 1+5B1] ", TA.,/uJ,?‘é’/,Z”-%_--B—_awza

7%e Prosgrane ,/or mili=z 1000 , J;‘:o.oos' j,o-q_r 0.;4/\34.
] 1 (| 1 1 1 1

/?/o mil?
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8.4¢ Fond 4he '/em/;cm‘/a.rc o«/ a (lack Slpﬁcrc ™ e?ui/l'é-n'wm
arth air at 20°C omd S‘arrou.na//ixj.r ot /000 °Kk .

t.?'ua//ah 8.32 ‘7/;“

. * Y
h = 5/2—/0.43(&]
77¢¢,fua./:;n ut meed 7o solie s
T T 4+ P “ __o
=T F T
We )4"-5}" eSS -/407’ Z‘xc /)V‘D/gf?‘/é.r /;l '/46 uf’(ff(y“v ylo‘/

5 Cawm b cvalwaied at S00°%. T7His f((f&r

df/s’a’_ 7.8(253)" (2 x1072)}

v -5 -5

3.5 x00 (5435 x10"")

Lo wit/ b < 10° of 8T < 772 °C | or T < 1065°&,

= 125.4(%)"

T4is W;//G/WRVJ e 2he cese , S¢

—

h = 355 +2.87 (T-70)7*

or T =253 ¢ 0.56{7'.7-4\'/0‘8(/0/2—7_4)
398 2.2 (7-253) “
7:7/4 fd/u_//.ah '/a '/41" Cj‘.’(.q,?‘fa.';,. ’s {0/. ‘/)’ Ok} Rpno -7,

V-/‘c /)ro/;crﬂr,_; arc 6(/&./(...@{¢/ ad ~fSo °»é'j ~m /Ld.y‘-&

_ %
F=343 +3.404(7-7)7"

a“*‘p r-’ 55./. 35 ’/6’ ém d&[:‘/rr'»‘q,( ;'/&ra.‘/'.c;f- ‘V\/Z'{-":

T = W40k y:ch: T = S$B4. 5S¢ k. eg—

7=~ O
o 443 K

Abo7e : Tie tevedim process descritcd +a ;-/Oofua‘/c Z e

chopler b dirges if the siiTal geess for T
/s Hoo close T effer 253 or /0cG.

266

Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



PrROBLEM 8.53  An inclined plate in a piece of process equipment is tilted 30° above horizontal.
The plate is 20 cm long in the inclined plane and 25 cm wide. The plate is held at 280 K by a
liquid flowing past its underside. The liquid is cooled by a refrigeration system capable of removing
12 W, but if the heat load exceeds 12 W, the temperature of both the liquid and the plate will begin
to rise. The upper surface of the plate is in contact with ammonia vapor at 300 K and a varying
pressure. An engineer suggests that an increase of the bulk temperature of the liquid will signal
that the pressure has exceeded a level of about p_;; = 551 kPa.

a) Explain why the gas’s pressure will affect the heat transfer to the coolant. What is the
significance p;, = 551 kPa?
b) Suppose that the pressure is 255.3 kPa. What is the heat transfer rate (W) from the gas to the
plate, if the plate temperature is T,, = 280 K? Will the coolant temperature rise?
c) Suppose that the pressure rises to 1062 kPa. What is the heat transfer rate if the plate is still
at T, = 280 K? Will the coolant temperature rise?
For gaseous ammonia at 255.3 kPa and 290 K: 8 = 0.0040 K™!, p = 1.86 kg/m?>, cp = 2314 J/kgK,
1 =9.75x 1079 kg/m3, and k = 0.0247 W/m-K. Take other data from Appendix A.

SOLUTION

a) If the vapor’s pressure were to exceed p, (280 K) = 551 kPa, the vapor would condense
on the plate. The vapor cannot condense at lower pressures, and heat transfer would be
by natural convection only. The heat transfer coefficient in condensation is more than 100
times greater than for natural convection, so the heat load would be dramatically higher for
pressures of 551 kPa or more, causing the refrigeration loop to overheat.

b) At 255.3 kPa, the saturation temperature is T, = 260 K < 280 K; condensation will not
occur. The film temperature in the vapor is 290 K (which corresponds to the data given).
From the given data, v = 5.24 X 107% m?/s and a = 5.74 X 1075 m?/s

Replacing g with an effective gravity g cos 60°, the Rayleigh number is
_gcos 60°BATI? _(9.81)(1/2)(0.0040)(20)(0.2)?
- va ~ (5.24 X 10-6)(5.74 X 10-6)

The Nusselt number, from eqn. (8.13a) and using effective gravity, is

0.492\9/1617*°
1+< : ) l

~ 1.04 x 108

RaL

Nuj, = 0.68 + 0.67 Ra}/* -

- 0.492\°/1677*°
_ 1/4 - =
= 0.68 + 0.67(1.04 x 108)1/4| 1 + (0_912) l
~ 54.0
Then,
ok 0.0247
= - = 4 =0 2K
h=Fa, K s 0( s ) 6.67 W/m

and the heat transfer is
Q = hA(T,, — Ty,) = (6.67)(0.2)(0.25)(300 — 280) ~ 6.67 W < 12 W

and the plate and liquid temperatures will not rise.
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c) Ata pressure of 1062 kPa, the saturation temperature is T,; = 300 K > 280 K; condensation
occurs. The Nusselt number, from eqn. (8.62b) and using effective gravity, is

o1 1371/4
pr(pr — pg)g cos 60°h, I
:uk(Tsat - Tw)

Here u, k, and py are properties of the liquid at a film temperature of 290 K, and p, is for
saturated ammonia vapor at 300 K. A simple calculation shows that Ja = 0.078 and so with
eqn. (8.61), hy, = hp,(1.040) = 1204 kl/kg. Then

Nu; = 0.9428[ = 1814

(614.7)(614.7 — 8.244)(9.81)(0.5)(1204 x 10%)(0.2)3
(1.39 x 10-4)(0.488)(20)

— 1/4
Nuj;, = 0.9428 ] = 1898

The heat transfer coeflicient is
— k
h= Nup 7 = 4632 W/m?K
The heat transfer rate is

Q = hA(T,, — T,,) = (4632)(0.2)(0.25)(20) = 4632 W > 12 W

and the plate and liquid temperatures will rise.

Comment: The ammonia vapor is part (b) is superheated, but still not far from saturation
conditions. The vapor does not behave like an ideal gas in this range. The property data given are
from the NIST Webbook, https://webbook.nist.gov/chemistry/fluid/.

266-1
Copyright 2024, John H. Lienhard, IV and John H. Lienhard, V


https://webbook.nist.gov/chemistry/fluid/

PROBLEM 8.54 The film Reynolds number Re, in eqn. (8.72) was based on the thickness, 6.
Show that the Reynolds number would be four times larger if it were based on the hydraulic diameter
of the film.

SoLUTION The hydraulic diameter is defined in eqn. (7.60) as
4A,
P
where A, is the cross-sectional area and P is the passage’s wetted perimeter. For a unit width of
falling film having a local thickness &

DhE

4(1)(8)
Dy, D 45
because the wetted perimeter is the part of the film in contact with the wall, excluding the free
surface: P = 1.

The film Reynolds number from eqn. (8.72) is

w
which takes the film thickness as the length scale for the Reynolds number. If instead we define the
Reynolds number using the hydraulic diameter, we have
D 4pu, 6 4T
Rewp — PlUavp — PUay _ ¢
M M M

Thus

Answer
Rewp = 4Rec —
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PROBLEM 8.55 A characteristic length scale for a falling liquid film is £ = (v?/g)'/3. If the
Nusselt number for a laminar film condensing on plane wall is written as Nuy = h{/k, derive an

expression for Nu, in terms of Re.. Show that, when p; > p,, Nuy = (3Rec)_1/ 3.
SoLuTION  Starting with eqns. (8.58) and (8.72), we have
hx x
Nu, = — = = 8.58
Uy X 5 ( )
and 3 3
- 0 Ap go
Re, = & (or = pg)95° _ prdpg 872)
3u? 3u?
Then, by replacing x by ¢
N
=% T
and, by rearranging Re,,
3y 1/3
5= (_ R)
9Ap
So
2y 1/3 1/3 1/3
A _ A _
Nug = (V_) (M) Re-/ = (_P) R/
g 3uv 3pr

and when pr > p,, Ap = pr so

Nu; = (3Re.) "' | for pr > p,
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PROBLEM 8.57  Perform the integration for hin Example 8.8 and obtain eqn. (8.67). Hint: Re-
call that the gamma function, I'(z), is a tabulated special function. It may be shown that [8.42,§9.51]:

/2
j cos?™185in®"16do = M form,n >0

0 2T(m+ n)

SoLuTION The integral in question is

R

This integral may look formidable, but it is in fact merely messy. Let us start by lumping all the
constants

dx

2 J wha E[(pf—pg)h}gx3 xge(sin 2x/D)*
D

h=—
V(T = Tw) [¥(sin 2x/D)"* dx

, 1/4
(o5 — Pg)fe8e

Vk(Tsat - Tw)

k

2
D2

C

so that

B 7D/2 ) 4/3 1/
o Cf (sin 2x/D)1/3 doc
0 fg(sin 2x/D)"" dx

zD/2 X -1/4
=C J (sin 2x/D)1/3[ J (sin 2x/D)"/> dxl dx
0 0

where the factors in x canceled out. Now define
f(x) = (sin2x/D)Y/3
and we have

nD/2 e -1/4
E:Cf f(x) J f(x)dxl dx
[Jo

0
Further, we can take advantage of the derivative of an integral. Let

F(x) = er f(x)dx
0

Then
dF
dx Jx)
So,
D/2 D/2
- dF -1/4 4 3/4 4 3/4
h=C jo T lFeoax = e reol”| = Sefrapra)
Now, with our previous definitions
D/2
F(nD/2) = J (sin 2x/D)'3 dx
0
266-L
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which corresponds to the integral given in the problem statement for m = 1/2 and n = 2/3, where
we put 6 = 2x/D:

F(D/2) = J:D/Z(sm 2x/D)V3dx = g f :(sin 6)/3de =D J:/z(sm 6)1/3doe =D %;(62)/3)
From tabulated results, we find that
r(1/2) =7, T(2/3)=1.3541---, T(7/6)= %F(1/6) = %(5.5663 )
Collecting all this:
74 [ p LA/2)T(2/3) 3/4 _ a2k [ (or — pg)hiegeD¥* 1 l6\/7_t(1.3541)]3/4
3 2T(7/6) 37D V(T — Typ) 2(5.5663)

and finally
1/4

— 3/4 ,
No.  hD _ 4/2 [ 34/7(1.3541) ge(or — pg)hfgD?
DT T3 | T (5.5663) VK(Toq — Tpp)

1/4

ge(pf - :Og)h}"gD3
Vk(Tsat - Tw)

Answer
(—

= 0.7280 [
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PrROBLEM 8.59  Using data from Tables A.4 and A.5, plot 8 for saturated ammonia vapor for
200 K < T < 380 K, together with the ideal gas expression Sig = 1/7T. Also calculate Z = P/pRT.
Is ammonia vapor more like an ideal gas near the triple point or critical point temperature?

SOLUTION

0.020

0.018 [—
0.016 [—
0.014 —

0.012 —

BIK™]

0.008 [—

0.006 [—

0.004 —

0.002 —

0.010 [—

© Data from Table A.4
— Ideal gas, Big = 1/T

0.000
200

220

240

260 280 300

Temperature [K]

320 340 360 380

With p and p from Table A.5, and using R = R°/Mnn, = 8314.5/17.031 = 488.2 J/kg-K, we
find Z as below. For an ideal gas, Z = 1.

T[°C] Z T[°C] Z
200  0.9944 300 0.8788
220 09864 320  0.8263
240 09722 340  0.7606
260 0.9505 360 0.6784
280 0.9198 380 0.5716

Saturated ammonia vapor only behaves like an ideal gas for temperatures close the triple point
temperature (195.5 K) and is highly non-ideal in the vicinity of the critical point temperature
(405.4 K). This behavior underscores the importance of using data for 8 when dealing with vapors

near saturation conditions.

Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V

266-N



9.1 Water boils, according to the graphical retation in Fig. 9.2,
on a 1.27 cm thick copper slab which starts out at 650°C.
Plot Tgyap vS. time, indicating the regime of boiling and
noting the temperature at which the cooling is most rapid.

LWL ook
Bir T 2 <L aslengash
i1s less than 'L°.sJé.oo-\%/-
M=%

q |

from eqn. (1.19)

T

i .
’ l - T Tde-])
R LS
D e DT
AT; AU oY AT T
s> pel 2T =43 %——i
Now we Uuse '\'\Ms eq_n }l F\3 9.2 + aleddate: '
A-E*?C AT‘_ DL q-‘_ ,:A:_og 8{’. Sec {Lﬁ ¥L+ s*
SSo | 400 45«0% | 1456 | a.s6
400 Joo 0,% " 54.5‘3 C9.|q‘
300 | 200 0.5 n 81.53|15¢.§ —mMm—
200 {so ;? " a3.61 zi%,sz q—m‘n
150 | oo 2.8 « 1.8 | 203,
100 6o 15 b 2.3 |210.3
6o 3o I (15| 211.45
Jo 10 1.8 u L] 2I1a s q’uav_
l: ‘{ ;{;’," 14| 21311 — g
3w 2.9 216.62 ™
z | oS u a 1'19.653 bo1 \s 4 |ncef‘\-|w
O
600* film \)O\\ma -
0\) ° j:vamsnhov\
‘_- L bo-lms
-
Y —ﬁ-—-‘——»“\]&)e&x{
j 400 bo\\ms
g
s L watural
?— L Convection
Q
—f—
o 200p—
J
n
o | |
(o) 50 ({o]e] I1SO 200 280

é'MeJ i‘ sSec.
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9.2 Predict qu,, for horizontal cylinders for the cases in Fig.
10.3b and indicate the fraction of Anax 1N each case.

(a) 0.0322 cm diam. in methanol with g = 98 m/s<

(b) 0.164 cm diam. in benzene with g 9.8 m/s?
fict £ ! ’
:r;l— 1nd R": R =R j(f;-(ﬂ,}/r Mmebaanol herzeme
Tae] &ac°c 30°C
A d c/(A 2.3 /‘l“\
! _ 0322 [GE00.875) G | 197 A yne
R‘““‘. ~ 2z %——32 0.332 /)‘ .3‘4‘3&/‘-\’ 8 %u/‘ﬂls
So | .oomr o 00249
t | e.ted [aes(ueM W " 9 13/k
2&»a,~ = ugf-) = 0.502 b v g 2 I/

[ Y —

l’t
2 E.( bl) 3 " kg ks \ = w
Q'wreheu > % 1T 25 ) a0 v 38 % o1 e (213 ;.’> 980,000

at
= T, (2.44)% 35100 [T 3CommE®) ~ 293000 Yo
q"um(zh Za L ° 39loes,/9. 30 23)(B14) — 3 e
From Fig. 9.13, upper left-hand corner, we read:
a'WQK - w/ L
PO = |,2 Seo ﬂ“‘“‘ = ]ll')C,oao "nC -
ﬂ'nﬂaaxe Nell.. ey
p'=.332
-%-“—“—‘-\ = 1\ so 4,,.. = L8000 w,éﬂ-:
14«&:;_ 30«%. 9&-.1, ———

R=6.502

Fig. 9.3b shows methanol at 1,040,000 W/m2 or 88.4 % of qg,, -

Fig. 9.3b shows benzene at 350,000 W/m? or 90.7 % of qmax-}"

9.3 Water at 709C is depressurized until it is subcooled 30°C.

Find the pressure at this point and the diameter of the
critical nucleus.

Psat. at 700¢ = 31,170 N/m2,  poat a4 400 = 7375 N/m2 —=
d N/
65.49 X2 (10‘35——-;-
20.¢ 709C _ cm yne/cm

r. = =
c 31,170 - 7375 23,795 N/m2

diameter of nucleus = 2r_ = 1.1(10)76 m e
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9.4 Plot r. vs. liquid superheat for water at 1 atm.

L25¢
= 5 0'=o.z3s%(\-'-"£u-) -o.azs(lﬁrf-yl B
Patar T, o 1o 6.1 AL
(na/m2)
T o=
— o, Jo A . N._ * *T [ 9 na V' Mw rx
ls“‘P, L/ K -T:‘up 160 ¢ = saka sup e
1lo/383 1-3 0.0482 | .433xJ0% | 2.23%5€| 0.00223
1%/ 403 3o 0.04923 | 219 - 0.50 + |o.00050
|6°/433 ‘o 0.0341 a,ls n 0.\32 “ 6.000132
2"‘0/52:5 ISo 0.0147] 392.18 7.50x10"2 16
300/513 200 0.00894| 85,92 1.63x 10" G
-b
o t“‘:_§ v
p =150,
2o u
v ¢ Do
LT g
wil— 2324
33Y 8%
v e ')
I % 133-
[
w3zd§a
168 —
- '
i0 ] I
1O 200

T:suf °C.

9.5 Why does bumping occur in a test tube, but not in a teakettie?

The +est-tube s very Smoeth So (‘Q)k‘; hbe << ﬁ.‘)J« kebble
- e Ca <

Simce f, =2¢/(’PS¢4,~¥T““\'.4)3“_) IS Swmall, sat ab Thuel, 'S I“'%
Tuur-\ s alse much lu?l-u- n Yhe *¢s¥—+ul94 Mo 1w Hee Yea-ketHe,

It is beyond our scope here, but the thermodynamic
availability is a measure of the damage that a superheated
liquid can do when it nucleates. We can show [Jour. Ht.
Transfer, Feb. 1981, Vol. 103, pp. 61-64] that the
avalability rises as (Tgyp - Tsat)” -

Thus 4a (and the possible damage) increase strongly with
superheat.

I+ ‘o“ows %u“‘.‘
. T\aus
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9.6 Use van der Waals’ equation to estimate how much superheat
water can sustain at low pressure.

= T reduced (‘wv\ ’vL. vam dor Waals eg‘_uahu.

15 - 8Tv~ _ L
’?v 3(0-Ve) VT

set ?‘. 2 0 a-d solve ‘(‘U\r T,-M:

2 1=V
— Tr,\‘“‘ -} v =
Libiag pormt of low fnt!'.Su?erb\mh

Taay at low boﬂ!ss. 3

) .8\ D \=Ve L &
SM\OS\’)\‘\A'&'Q Tr*“ . 6= 3 K"")t 8 v+ V3
. TR N - 2
ot o= 1-V; + Ve ) Ve = 3
22 M 2]
Thus - Vi 58 T/ - 3%
o
Tonas o L, =21 a12 = 540 R
3

So, at 1| atm, the limiting superheat is 4T = (546 - 373) = }739C ~a—m———en

({The measured extremes are just a little greater than this.)

9.7 Find ¢ in n ~ 4TS such that the result is consistent with
Berenson’s curves in Fig. 9.14 and Yamagata’s equation:

q ~ nl/3471.2

From the log-log plots in Fig. 9.14 we measure the slopes in
the nucleate boiling range. Call this slope, d. The S
values are 6, 5.7, 5.3, 4, 2.2. Then:

q ~ a19 ~ aT€/3411:2 or ¢ = 3d - 1.2

Thus the S5 values of ¢ in n = 4Tt are:

c = 16.8; c = 15.9; c = 14.7; c = 10.8; and c=5.4 -
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9.8 Suppose C.¢ for a given surface is reported as being S0 %
higher than is really is. How much error will this contri-
bute to the calculated q7?

-S:m..\ eq_n,( 9.4) we have: q_n..(h‘t/c‘gf,
Then i AT .33

~N
aca\(u\ﬁs'el* |a53 CS'GCO'VQL*

_ Thus th leulahon 1s
or q—ca‘.cu\akeé - 0.29(‘0 q’correc‘- us e

low b; 10 7o =e—

9.9 Water at 100 atm boils on a nickel heater. 4T = &°C.
Find q and h.

Pmeer\—.e; ot Tyy =310°C: pe=690 kg/m? gy 213250063/ %,y
Py = 547 - cp = S¢oo S/kjt
A 0.0000%15 Lﬂ [m-s Pr = Loz
T =00uTkgls?  Cgf = 0-00C
Then, from eqn. (9.4)

A\? _ Csp
(cf&\‘/k@?‘- ) = NLJ]/S(/‘; s -

. 3 -
So: - 5too(6) o.oooob?S(I&ZS)lD‘ 0.0117
j. 1325800 (1.62) (0.606)3 2.8 (¢353)

G
9= conto) La —

6
6017 (19)
and. h= = — = 100300073 5.
aT e J W-C This s very
hlgh .
9.10 Compute qp,, for saturated water at 1 atm on a flat plate
= very large in extent -- at g/g9g = 1/6 and 107 7.

A“' Mri’L*ha(Maj Jravr‘j . ﬂmz 1,260)000 \U/m" [E(M\olc )0.5)

T\\us,a.'\' '%:'* lz

4
- \ w
Guar = h2o000 & = 05000 -
eaa————————————— %

bl a¥ %—; =Lb~4

4
%m= I,ZG.O)OOO —

I
ioF = 12¢600 YL
™m2

Since, in accordance with egn. (9.11)
/4
Fuosflu plate ¥ 3
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9.11 Water boils on a 0.001 m radius copper wire. Plot as much
of the boiling curve as you can, for this case.

We go through the regimes of the boiling curve, one at a
time, starting with natural convection.

120 /4. ssto.ooon)(o.ooz)’ Ya
Nu. =0.3¢ + 0.51%Kap =0.3¢ + 6”‘%[ 1-685(«:.2‘?2%?3]&.‘.:/4.
D &*e‘ég_q)%b]qlg [H— B.559 )9/,‘:r/9
1.74 5
° o
= Nug k—m = 122 AT + 344 AT”¢ ATC1 9 ==
o \ 266
2 | 281
3 3332
< 526
S 6910

The nucleate boiling heat flux is
given by eqn. (9.4)

3 -3
- cEL\T] \ ’ ap (azrs 4,9%{9,5) 3
[ he Fr J s 33£ {Z.zu(.o)‘t.w(o-m’)]o 2es () 22509 0.05%9 AT

i-_ 12,4—&"\'3

The Peak heat (:\wc ak R = RV?_‘(:;_:’_) 0.399 is given by eqn. (9.20)

AP .24 _ ¢ _ W
q‘*o“ [l.w%ut\x; (K’)“ - Ili" ) @399)'14 = ‘13071000‘;@

ge+ Erow Example (0.5
The mmimum heal Elun for R'=0.399 1s

4.7 O.T‘giR_.‘z?z?‘;ﬁ]‘M-[o.oﬁf\n /0 (*_f )z]

Ve
(o.ss-a)(z,zu,ow)

6,.6589(2.8)X958)
959 %

= 0.096%| 7 399‘(1[0 399)° *l\l

Yo = 23,800 W/mP —

Tw Yue (— ‘m ba!\m f‘?}lme \\ »\‘: b. * _\"V‘AA -_"‘“5'

3
q = ARSI J“)K’ . c.zg_‘f‘ 1/;3 J‘-‘\“*D ] } + 2o(Ta T

Bl ykg dT
where we assuwme € =L and (v Wik
’ ®1L3) 203 0 AT
‘,\‘_3-_ ),\‘_j(l 1—%.963-0'”’311}«) T 2,257 000 14_&0 E lo(Z] Zzsv,ooo)

= 2,261, 060(\+ 0. ooo’)S’Af)
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9.11 (continued)

|/4

_ 0.0231 0,243 1/4 958(9,3)1,257(10)‘04o.ouovsm)o.oo?] 3/4
= ———(0.L01 .

q=— [o.c61+ 95 10399 (0.67) St o o0 | At

+0.75 s T -1.93¢(0")

l/ -
q = 6¢83(V+0.60075A1) 4AT?/4+ 0.4255(!0)8(1‘3- 1.93(.uo)'°) for e \w\m}

200/ 5—
6- q’m:- 1,307 000 — “\\ *:jpnuj muc‘eo.x-e-
o Homs hon bebaview
_ N (not calculate )
~w— e
e |
’pl(h Lo:\;ng wlw Caffech(m
™ firr Fadiahon
usiv G-= L
3 g
6
ijncd Clm - tramsihion
bolling behavior, (net
calewYaked)
\i —
306"‘
e“c /
104‘ /41‘ 'glsm hou,mj with no
/ fadiaton. Pmﬁu‘hes
evaluated at §23°K
ov 320°C
l
l
3
LS&D)IS' ! lIO lO ! U B
‘ 1o 1000
3.2 ﬁrw —TSo.k\ °C.
&Y sccurs where (12287 +84421°74) = 124 A73

‘V\CCP’nm
Trwed %en—ovf‘ %,\\IGS AT(WCGP&'. = 3.2% o §.8°F .
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9.12 This problem is the same as 9.11 with the following excep~-
tions: Since the heater is a sphere, we use equation (8.32)
instead of eqn. (8.28) for natural convection. The peak
heat flux is given by egn. (9.22) instead of (9.20). Film
boiling is still given by h = hg , + 0'75hrag.’ and hpn,q, i
still the same. But we no longer need include a curvature
correction in calculating hg . because a 0.03 m sphere is
sufficiently large not to need it.) There is no reliableae%n.
for q,in in this case.

9.13 Predict Qnax for a small flat plate with only one jet on

it.
' (M pegbes ) achuel

= 14
q(nax E\ \ q-maxzz (A h..&u) 1dea)

%mat ;af a C\A' f\tk

2 Fwmax .14 .
B“L(A\MALO—«-)MQWQ: %d‘ s -\-\\ere(rvw. amax,z = )\dzl A"\oa‘-er

—

9.14 Show how to locate points of miximum and minumum h during
pool boiling.

Use Fig. 9.2

h= 2 . s\ope of lines
AT w\rnr_\r\ PQSS ‘\'\wouéh

the or\g\f\ ﬁ Youch

Yue curve

N

B

\1 at Pom{ B

(No\'\ce '\’\m‘\ ‘\'\\ls Camn on\3

be Aone on \mea% coof -

——

c\m.ﬁ-es. Fi1q.9.2 15
Seml—\o30\'\&"lc- There- oo

‘cvf we wmoust locale (’ew\—s
A éf C bg ial %encr 1 F'g' 9.2)\:«):39.{-:

AT

9¢ 0,000 w _ 176,000 W
\‘WO( = —1-:'——“_ = 48}")00“1_0& k‘l‘o»\s 250 Gsomz_oc o

9.15 A 0.002 m diam. jet of saturated water flows normal to a
0.015 m diam. disc, at 1 m/s. How much energy can the disc
dissipate?

(ff - 353.3_ ~ |60  So 24'..(9.41) wes A‘-'O,3Z9. Then eqn. (9.40)
/p9 0.597 9

1/3 A
Wes: 0.002 1000 D1eoS)
3 2 2.939 hpu ( _) ( —
R ax 2 /’9 H)ei\o.01s :_ujDﬁT
L CoS, ooe 0,322

/ ~ w
= 2.33‘)(0591)(2.251‘ 104 (0-833)‘ 3(353.30)(0.0\?)/ o. osae) = 3.65xip mZ

U
S0 the maxmum heak Axssufahon 15 Quux= 3,70 = GABW ———
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9.16 Saturated water at 1 atm. boils on a 0.005 m diam. rod of
platinum. What is T,.o4 at burnout?

= v
T —— % =bo4a/R ) Guan, (O 9.20))
RI‘-‘. 9(6“'£g] - 9-%(9;7-63) O‘ -
I = K 0.0595( cozs)
l =0.9915
' AT> o~ Ve 4
Trog Tour efm: 3 (059D(2251000) 10.0589(5.8)(9576)

A
=\, \o’LoaaF

/
se q\la-:: [0‘34/!2!' *) Q-Ma&zr-‘ ‘)04\ )DOO \AT/‘L'

’;rom eq_n.(9.4)

T Cu b2 o N ys
= st v Reg (.._——.._
ot 50t Cpp'" 3(/‘4-/35\) Fanan

{3 “3

vy
= 100 + 2:013(1.710)(2,257,000) ' (0.05'39 Loae1l) = o
4219(0.29x10 951.2)"> \9.8(952.6) (Lot Il)) L____\_‘DLC_
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9.19 Verify the form of eqn.(9.8) using dimensional anlysis.
ug = fn(s,pg,AH) . 4 variables in m,s, and kg. Thus we
look for 4-3, or 1T -group. Let's write

that like a .Weber number:

o] UZ)\

T = = const. or u_ = C —
o g p AH
- 9=

eqn. (9.8) is of this form with Cz=v2+

9.20 Compare the value of Apax implied by data for pool boiling from
a 1 in. diam. sphere in Problem 5.6, with the appropriate pre-
diction.

The measured value of Aax a0 be obtained using the expression

derived in the solution of Problem 5.6.

= Btu dT °F

= hAT = 0.712 ( 5= —)
Tmax sat ft§—°F dt s max

From the figure associated with Problem 5.6 we read

dar °F Btu Btu

v = 102 < SO Quax < 72.62 3 = 261,446 3 —

max ft -5 £+ -hr
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9.20 (continued)

]

Now for this sphere, R = 0.0254 m/2 = 5.07
0.0589 m
9.8(958.2-0.6)

Therefore we use egn. (9.21):

qmaxF
Tnax = 0.84 qmaxz = 0.84 173 = 0.737 omaxF

where g is given.in Example 9.5 as 1,260,000 L

maxg, m2

So:

q = 0.737(1,260,000)/3.154 = 294,426 —s1
max ft“-hr

In this case the measurement is 11% below the prediction. ==
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9.22 Verify equation (9.53) which gives § for a condensing film

subject to a shear stress, Tg»

We first integrate egn. (8.50) twice and get:

- - 2
au _ £ g _ PEPoy
ay - ot gy + Cl and u..———ipf =5 + Cly+C2
Ju T
The first b.c., u(y=0) = 0 gives C, & the second - = —
2 Y y=6 u
T Pe=p
gives C1 =S4 £ 9 gé. Thus 2
H Pg (pg=p ) gb v z2 T
=t 9 - - S
u 7y [2 ; (5) 1+ Y
Then equation (8.53) gives
8 PP T
o= = £ 946348
m J pfudy 35— 9 §7 + 35 8
o
and equation (8.54) becomes:
kaT _dm _ | P£Pg 2, s Jas
hf’d_a'i—l:_v_—ga * Y Y
g
which we integrate, subject to § (x=0) = O:
2kATv 2.2 [<2 2
—r@;—dx= (pf"pg)g §ds ""l."s slaa
or
akaTvx_ (4, 4 T8 3 o eq;n.(9.53)
2 3 glpg=p_)
3 faYheg IPe~Pq
3glp g )
Now if Tg = —~—z——41— § equation (9.53) reduces to:
4kATv x =0

Which means that only AT = O will work (otherwise the film must

grow to a larger value of § so 15 NO longer equals

-(3%wf-og)/4)ﬁd
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9.23 A 0.07m O0.D. pipe is at 409C. Saturated steam at 80°9C

blows across it. Plot h gy, for 0 ¢ Rep ¢ 10,

We are given the following expression for flow over
a cylinder, (where we evaluate H¢ and kg at 60°C, and the
other properties at 80°9C):

te:
- k U D v \/2 no
h = 0.64-6-{ /03/0 [i+(1+I.G3M } ) uma?co%
£ u:— \<4 (1; ‘_—Tu)
/
wheve k‘j = 2,308,000 (1+ [0.083 + L i%%);) = 2,349, 000
SO°
L o= 0.c5| 9.2 (2,3¢9,600)(0.000 355) 2
h 0.6% 0.01 l/‘+(‘ 163 2 (3‘.&.“\0‘1)'75 ) QCD
Re 0. 51 (40)
0.01
_ _ I2\\Ve. Yz,
= 5-.931-Ji+(‘_\_ ].408« (10 ) RCD
RCD?-
When Rey = 0, b = 6480W/m™°C, o+ eqn. (9.55)
teduces h - - 4 —
: h=017297 ﬁ?.\] q\eq P2 D
D Vs ke AT
wlmc\« 1S vnr"ﬂaa‘lj e same as e?uahm\ (8.67> gows*“kc
CmA&MSA'hw..
5|
g =
g
3 e"_ ok
[ 4]

-

°
X
J
1= T
3 =
2t
l o
o l l | l
o 2x10° 4nl05 Gxlo? Feio® 10@
Res
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9.24 a) Suppose you have pits of roughly 0.002mm diameter in
a metallic heater surface. At about what temperature
might you expect water to boil on that surface, if the
pressure is 20 atm.

b) Measurements have shown that water at atmospheric
pressure can be superheated about 200°C above its normal
boiling point. Roughly how large an embryonic bubble
would be needed to trigger nucleation in water in such

a state.
a) T... = 213°C = 486.2°K ; T = 386.2 _ ¢ 9512
sat ¢ ' “reduced 647.2 :
o = 235.8(1-.7512) - 256 (1-.625(1-.7512)) = 34.70 dyne/cm = 34.7%
= N
_2(0) _ 2(34.)m _ N _ .
then Ap = R 000001l m 69,400 mz 10.064psi
T_,. at (20(14.7) + 10.064)psia is 419.8°F
AT = 4.60°F or 2.56°C.__ much less AT is needed

to drive boiling at ele-
vated pressures

b) psat(300°C) = psat(572°F) = 1246.6psia

20

R = — but what is ¢? Probably it should be evaluated
Ap 2
at 300°C or
o o 3004273 | oo
r = gar.2 -©
s = 235.8(1-.885)1°2%0(1- . 625(.115)) = 15.57§§%9
_ 1bf
= 0.00106712%
_2(0.001067) _ -8
R = 17346.6-14.7) (144)" 1-203x10 "ft
= 1.443x107 £t
= 3.666x10 Omm|
[+]
= 36.6a And that is very small
indeed.
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9.25 Obtain the dimensionless functional form of the pool boil-
ing qg 4, equation, and the qg,, equation for flow boiing on
external surfaces, using dimensional analysis.

The pool boiling result is worked out fully in the sotution
of Problem 4.28. It takes the form:

-"l%_'“i"‘_ - !
4 q’\MC\X; B 4(:(1\)

2 b called e Kubateladae No.

A1l solutions for gg ., in Table 9.3 take this form.

For external flows we have:
%MAL: g-k(/oﬁ)/J;)L‘chG—J L" uoo)
3/5\«1'—3 \(3}“3 kslm:’ lej kJ/SI m W'I.S

Thece ave 1] vartables n 3,%«,\43,)‘, S o 1-4 = 3“-01‘0\:?5;

A :
™ = ‘ = B Toawe, = foleb

\)05\1@;‘; /3 3 - o
Thus

%mm& — g:\ (% , wek\

JSM_"_QN.& j

We see that the flow boiling burnout expressions in the text
take this form unless there is an additional characteristic
ltength in the problem. (See the expression for Anax when a
Jet of diameter, d, impinges on a disc of diameter, D. This
introduces an additional group d/D.) (See also the Katto
flow boiling burnout correlation form.)

9.26 A (magical?) additive to water increases ¢ tenfold at 1|
atm. By what factor will it improve Qnax during pool
boiling on: (a) infinite flat plates and (b) small hori-
zontal cylinders; and (c) when a jet impinges on a disc.

o) from eé}w. (9.11) Mﬁﬂh} = (0."‘ "‘)|/4; (\O\.M

O L Ik
Fmav (Tiow) T iow

= |.78 ——

e —

b) fww\ egqn. (9 20)  Fmax (&) ox, /a4 R'a) a4 Varg N 34
. —_—— T T 1 - Zh =1 = 2, Q
q‘mag (0-‘) (0-{3 (R’(ﬂ"‘)) Qo.\ (Ga) ° 2 3

A
c)from egn.(9.40)q,,, () _ We, (9) i (Ui A
q‘MAx (“;) Weo(c“h\ -

a;
omd from eqn. (9.41) we get b o, /Py = 951.2/0.591 = 1LO3 ¢
A=0.329, Twus:

J

QApac X CQ‘“) A 0.329

e =10 = 10 = —

a'w\az (G‘IS 2.133 -
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9.27 Steam a 1 atm. is blown at 26 m/s over a 1 cm OD cylinder
at 909C. What is h? Suagest a physical process w@thzn the
cylinder that could sustain this temperature in this flow.

. 0.22874212010) \ _
he, 2157,000 (14 (0. 683 + 2228] 1,'zﬂ’mm). 2,291,408

)/
¢ /2 A
—_ (o.6) / 9,8 (2.221)16 (0.0002776)(0.01)
Nuq = O.64 eto.0l Ly{V+).
© {0.19(10‘563_ & &3 262 (0. 6aW) (100-20)

= 8584 |, se h =Nuy k/D=3584(.c81)0.0
= 56,466 W/ m-C —

This means. that we need a powerfully effective heat removal
process in the cylinder -- enough to carry q = 384,660 W/m2
away from the surface. Nucleate boiling to water at less
than 1 atm. could do it, especially at high velocity. The
right liquid -- one that is very cold and moves at high
velocity —— might be made to do it.

O . 28 The water shown in Fig. 9.17 is at one atmosphere and the nichrome

heater can be approximated as nickel. %hat is T - Tsat?

C"F(,—— QE—ENu\. where we seale L_‘:-LB cw from the fho-l—ojﬁl,. use
eqn. (6.68) for Nu,_ .

. ‘ i
q‘_%: AT (0.68V1) o,sfage.sz)J V2 1.72/

o.18 0.29010)"*

And Frnm eq,mC 9 '4) .

- -6 3
q,= AT Mlp \jﬁAe _ AT 951.2(0.29)16" 429 [5e@s12-00)
Cs¢ k%?,‘ = o003 2.251%10'F 1722 | o.os89

q = 148 AT 3
3

= 1 ZAT

Then. nohua +hat 1S b L we use the i,
) Mo 1 y

Faa
Corm o@ e,ng\. (9.37), name/‘j %_?— —‘)43%’9‘( . j

e—
—

4805000 =1112(1485) AT® | AT = 7,55 °C -

This is quite low. It gives h = 27,700 Ww/m2-9C. The process
is very efficient.

9.29 For film boiling on horizontal cylinders, eqn.(9.6a)is modified with Fig. 9.3d
. 2\-4 . 3
to: Ay ® zu/z([g(pf-pg)/cl + 2/@iam.)?) % If o is 748 kg/m

for saturated acetone, corpare this Agr and the flat plate value,

22 qasp 5 0.000ATWT S0 ) = i = 0.0041Tm
- & . d _/9.%(14%\+ =
Sok ek - 0 € °C X 0:020  0.000A3F | aoa
se T =0.020 kjls
(over)
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9.29 (continued)

Ta Fu& Q.SJ we -{-‘.,‘A q—uJave‘@uJ‘Hn_s in 2.9 ctwm <,

= 0.72 cwm
A@(f"’l . —_—— —
0.1%~- 0640 . -

c\ev tafion 'i‘\'om Jﬁ\‘lco\'\j = —-—'o—':l—}——' = 35 7—‘—‘
N . - &ni{3 2 0.018m = 1.Bcum which 15 1472 claove
plome 92.2(140) =/ Y ex\:'\'\. value 52777

0.0 Aa

abeve the L

9.30 Water at 47°C flows through a 13 cm diameter thin-walled tube at
8 m/s. Saturated water vapor, at one atmosphere, flows across the

tube at S0 m/s. Evaluate Ttube’ U, and q.
Guess T =677 ﬁmfra/oeffJ evaluation . Thea T Hio = 57‘5‘ ;/—835(

2 7"‘v€/:/e S 2045345 ° L= 0.6477 | Br=3.14, ﬂb-ooma',l
in the film S =o.3%~/o“’, Kk =o. 6743
(This quess is alceady a second herahon. we din't presemd Ho st o ha

Now we use eqn. (7.41) Rep': Blors Z.H((O)Q'

0.493(10y©
£)8 = 1/8[1.82 log ,Re - 1.64A1% = 0.001283
AL

o ~ 0.001283 (z.110%)3.14 o'owge)o.zf
)

.o » \2.7)(0.035‘82)(3.\4213. \) 0,000411 = 5774

—

N — - 2 o
L‘u,o o babe S ST4 (0.aM) /0.3 = 28, 76 W/,,,_ ¢

(—or Cond&nSa.jnonJM's's«)C use eq,n (9.56) -~ use cge n. (9.55)

wou\a\ be wmore accum\'t but cmly b whout 12 o+ "H
l’ltaL Re (see belsw) NI ‘ “ * Vi‘)

_ O.13(5t 7
Q"-D = m;).% = 1.819010)
N 614 w
N“o“‘- 0.64+/2(1819)107 = 3,923 | \,.“3:3236 3-zo M8 =g
Then * " -
== ‘ = 11,918 W/ wi- ¢ —

+
28168 20,348

=N~

g =UAT= 1,918 (100-41) = 631,663 W/m* =

= |00 —- (03\‘9&2

o

- 100 -, . < = -
%[ C{- \A l\mt t“be) J —I;ubd 26,38 e3¢
This temperature is within 29C. Further iteration is not

needed.
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9.31 A1 an diameter, thin-walled tube carries liquid metal through
saturated water at one atmosphere. The throughflow of metal
is increased until burnout occurs. At that point the metal
temperature is 250°C and h inside the tube is 9600 W/mz—"c.

What is the wall temperature at burnout?

R = R/'JG/S(&’J’«Q = o.ooY/-Jo,os'esfg,g(gsg,l_o_‘,) = 1.99¢ , S0 we use
@ﬂtﬂu (9 .\®) fur burnout

= 0. = 0, = *
gmu 2 ‘3(..‘“(\“& late 0.9(},2606,0060) 1,134 o000 W /m

See Exa«»?\e 9.5
Thow:

1,134,000 = 9¢00(256-T,.40) Se T, = 132°C -

9.32 At about what velocity of liquid metal flow does burnout occur

in Problem 9. 31 if the metal is mercury?

\4 9600 (0.01) _ . .
The Nusselt no ot %M‘ '8 = 15.69 so reading from Fig.7.9,

Pe, =2200 = Up D/ = Ual0.0)/59915% S0 UL=z1l.2 Mfs
k—————————————— 3

9.33 Explain, in physical terms, why equations (9.23) and (9.25) in-
stead of differing by a factor of two, are almost equal. How do
these equations change when H” is large?

In both cases, burnout occurs when enough vapor is generated

to cause Helmholtz instability to occur —-- it does not matter
whether from one side or two. Thus, when H’ is large, Qgax
is equal to 0.9 qmaXZ -— the same value in both cases.

Indeed, if we have the same vapor volume at qp,y in both
cases, and if both qg.. values are the same, then H’ must be
twice as large in the insulated case. That is why the con-
stant, 1.4, in egn. ¢ 9.24) is exactly 2!/% times the con-
stant, 1.18, in eqn. (9.23). i.e.:

1.18 _ 1.4
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Problem 9.37

P_vap (Pa) T_sat (K) T_sat (C)
1000 280.12 6.97
10000 318.96 45.81
100000 372.76 99.61

t(C) Delta T (K) g (kW/m~2) h (kW/mA”2K)

6.97 1 25.1 25.1
2 52.9 26.5

3 83.7 27.9

4 117.2 29.3

5 153.6 30.7

6 192.9 32.1

7 234.9 33.6

8 279.8 35.0

45.81 1 113.0 113.0
2 238.8 119.4

3 377.3 125.8

4 528.7 132.2

5 692.9 138.6

6 869.8 145.0

7 1059.6 151.4

8 1262.1 157.8

99.61 1 210.3 210.3
2 444.5 222.2

3 702.5 234.2

4 984.2 246.1

5 1289.8 258.0

6 1619.2 269.9

7 1972.4 281.8

8 2349.4 293.7
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Heat Flux vs Temp Diff (99.61 C)

2500.0
2000.0
1500.0

1000.0

Heat Flux [kW/mA2]

500.0

0.0
0 1 2 3 4 5 6

Temperature Difference [K]
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Problem 9.38

Surface at 100 C

Delta T P_0 Delta P rho_0 factor mdot (kg/m"2s) g (MW/mA"2)
0 101420.0 0 0.59817 0.000345552 0.0 0
1 105090.0 3670 0.61841 0.000345231 13 3
2 108870.0 7450 0.6392 0.000344907 2.6 6
3 112770.0 11350 0.66056 0.000344564 3.9 9
4 116780.0 15360 0.6825 0.000344241 5.3 12
5 120900.0 19480 0.70503 0.000343941 6.7 15
6 125150.0 23730 0.72816 0.000343615 8.2 18
7 129520.0 28100 0.7519 0.000343299 9.6 22
8 134010.0 32590 0.77627 0.000343 11.2 25
9 138630.0 37210 0.80127 0.000342697 12.8 29
10 143380.0 41960 0.82693 0.000342402 14.4 32
TO0 373.15
p 0 101420
R 461.404
coef 1.6678
sigma 0.31
factorl 3.0329914
hfg 2246000 treat as constant
Surface at 40 C
Delta T PO Delta P rho_0 factor mdot (kg/m~2s) g (MW/m~A2)
0 7384.9 0 0.051242 0.000372416 0.0 0.0
1 7787.8 402.9 0.053871 0.00037186 0.1 0.3
2 8209.6 824.7  0.056614 0.000371306 0.3 0.7
3 8650.8 1265.9 0.059474 0.000370756 0.5 11
4 9112.4 1727.5 0.062457 0.000370213 0.6 1.5
5 9595 2210.1 0.065565 0.00036967 0.8 1.9
6 10099 2714.1  0.068803 0.000369146 1.0 2.3
7 10627 3242.1 0.072176 0.000368579 1.2 2.8
8 11177 3792.1 0.075688 0.000368067 14 3.2
9 11752 4367.1 0.079343 0.000367534 1.6 3.7
10 12353 4968.1  0.083147 0.000366984 1.8 4.2
40C
TO 313.15
p_0 7384.9
R 461.403996
coef 1.6678
sigma 0.31
factorl 3.0329914
hfg 2306000 treat as constant
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10.1 What will be the apparent values of €,-g.2um 2N9 €3=0.45Km
for the sun as viewed from the earth’s surface.

From Fig. 10.2 we sgcale
r=0.2

c

These are low.
earth’s atmosphere.

e =

A=0.65 < g_]
. eb A

e

—

e,

Az0.2

=0.6S

/°

= 0,17 &

They show energy has been removed by the
(The sun itself is virtually black.)

10.2 Plot e

a,b ¥8. T for T = 300°K and 10,000°K. What portion of
the total energy is radiated in the visible range.
27 (6.62 339 , - 3_0\\?
equation(1.30): e, = (C.625e<16" " )(2.99¢x10) 2
b YL 6-625L2.998)16 *A. 3005 (165 3T 5
/\ (-4 _]] '
W . 37417 10°%5  yw where X 15
e kz }‘S‘ [eo.budn/TA l] Mi-um (R} /um and
th-/um = s T 1san %
o
0.03|— 1300°K\
kW
o - pam
0.02 |— IOG-- KIDJODD"K!
M
0.0l |— 58k 3
\ >
\ $ nfea ved
\ 5 \
s \
OB 0o \\ 1
fe) Via) 20 O i 2_
r— \Jls\\,)\e fan v bl
ConYams virtuall Isible Yan

no visible 1, b\?
atr 206°Y
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10.3 A 0.0006 m diam. wire (€ = 0.85) at 950°C is on the center of
a 0.07 m diam. thin metal tube (€ = 0.09). The tube is
horizontal in air at 299¢c, Find T ube *

= 2_0
First guess hc:onv = 6 W/m C. Then from eqn. (10.14)

- f
Q - ?Q‘A (qu—rq) . (r TrD|(T‘q"T14> _ 567('0)8'“ (0.0006)//??3 'Tzq)
A

2 { i LI \ D \ =
— 4+ YD =4 A OOOOL N\
€, Dz(é"' ) 655 507 (‘r‘i,

_ -1l 12 —
QL= 3.46 x 10 (2.2377_10] -T:\) = WAAT=¢ w0,07)(T,- 29%)

Tnula«ﬁurw %wcs; T‘z:4g7oK: 1L7°C

ﬂ\&«,eda\u\wna a.u J}forﬂ-r‘he_; lo“-}./} ok lé’l;-Z(z 9%°¢ = 3¢5%
Ea = iﬁA__TDa . 9.} a‘es (11-25) 6,013 .
b X B 2.2¢6 (3. u8) 10 = 22010
so . Ja
‘
Nuy, = 03¢+ 253 (2-20'104) s
,ss59]%e] VO
[0 707
amd
0.030917
= 1§\ ===—_ = W
h = ces Y

nsina 6.68 uslead o(— G m Me heat ba‘&wce egruahw\

above, we 30,4: \L—4'Z.?. K = 149°% . Ta awes
L\ 646 . Then TZ wi I\ d#or In Pruro(‘"’lw B
Q= 66301a9-25) = C.A6( T, , -25)
Tz.--T..S.hlelo\ = 153 °C
a
o _Tu-T
s =S TR T 24 b, Should be less Hyan b
wire !
q__ 4 M,
L‘Vﬂd‘s - e O\—E..__:-Fr_- = ’.0) 'ﬁn; 1S ﬂé!ni"‘ (llb\) L‘Llh\\/‘

Thus the present assumptions are not bad, but a refined

calculation would account for convection inside and radia-
tion outside.
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10.4 A 1 ft2 ghallow pan with adiabatic sides is filled to the
brim with water at 329F., It radiates to the night sky whose
temperature is 3609R while a S0°F breeze blows over it at
1.5 ft/s. Will the water freeze or warm up?

5 s ‘Skj‘-/i““’l Cy, = 0.5C

TT-SO"F l oy gt et .‘;Is 32°F

13 '/7. Evaluate pro e#""CS
® FMA q_cwv USIH3 MUL: 0.664 Pe Re‘_ ( ok 50;37_{) 41:0;;
w = 5°C )
. —  0.02445 5. '/'5(1.5‘(0.3::%)(0.3043) Ve wW
se:  h= ——"Foees(o 1) CTTaay ) = 43015

q = 4.%01,([_(5'0-31)/\.%] = 4%.02 W/m?
Cony

j~ 4 4
(-] -
Find Yrad * R T (Tare = Tony ).
6‘ Az €,
20 - o

- W
= &0 CT,;- _(;4 ) = 0.3(9(5'.(_;]:|08X1'\34-Zoo‘)= 275 w

Thus about four times as much heat radiates away as flows
into the water by convection. It is, in fact, possible to
freeze water in the desert in this way, on warmish nights.

10.5 Find the temperature, . of a thermometer in 10°C air and
27°C walls if it and thg room are black.

Let's treat the thermometer bulb as a vertical wall, 0.01lm
in height; and evaluate properties at 291.5°K & B at 283°K

Then, using the simple Squire-Eckert equation (8.27)

3-1/4-
- 0.0255 ___0.713 1/419.8(1/283) (T-10) (0.01) 2
h = 557 0-678| osaro513

0.01 952+0. 71 1.490(2.092)10 L0

q = 4.54(1,-10)>* = 4,54 (T°r)-283]

i Y 4. _ -8, 4 9
And: Apag = ~0(Tp = 3007) = -5.67x10 (T - 8.1x107)

Setting these equations equal to one another and solving
them simultaneously for TT' we get

TT = 292.6°K = 19.6°C -

Notice that we should have evaluated propertles at
(19.6+10)/2 = 14.8°C = 287.8°K. That's only 3°C off the
mark so we let the calculation stand.
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10.6 What will T, be in Problem 11.5 if ¢, = 0.94 and

€. = 0.92 t& 0.58. T
w
is now = -1 4 4 e -
Urad T T, ©(Tp ~300") = 5.33x10 8 (ra-300%)
ET+Aw Ew
neglect
The trial and error calculation now gives: T, = 19.4°C =

T

The black body assumption was very good in this case.

10.7 Two thin aluminum sheets, one polished (€=0.05) and the
other palnted black (e 0.9) are placed horizontally outdoors
in 10°C air. h = 5W/m2-°C on both the top and bottom. The
top is irradiated with 750W/m2 and it re-radiates to a sky
which is at 170°K. The earth beneath each plate is black
at 10°C. Find the temperature of each plate. (Assume the
sky to be black).

In either case we can write:

4 4 4 4
q + € o(T - T ) + ¢ o(T - T
sun plate sky pl pl earth pl
e —— \\r_a | U,
= 7500t 1. 1704 2834

=750 C—\,\ .

= 2h(Tpl - Tair)

283

Put in the known numerical values for each of the two
plates and get the following two equations.

(37.5 + 20.55 + 2830 = 567x107° T ] + 10T
ply Pll
and 2888
675 + 270 + 2830 = 1.0206x107 T°  + 10T
Iy P plp pl,

3875

Trial and error using a pocket calculator gives

T

285°K = 12°C ~=

pl,

T

302.3°K = 29.3°C ==
pl, ——

Notice that the highly reflecting surface is, as we would
anticipate, almost unaffected by solar radiation. For this
reason, unpainted aluminum rooting is sometimes used in sunny
climates.
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10.8 Find the tip temperature of the Th

P
sample holder shown. Assume
0.0lm—>
. Aroan
Fsample holder—sky 1 CMwefan.Q
and take the holder to be a alummum Ol bwm
finite fin. & =0.0%
=& Space
A
o~ 4 4 ”
T A (T, -T, ) _ ) b}:"ko
h,“- — whece |hgoc_ at 30°K
nTs a¥ O°C
- or 2713°K
_ S.e7-10 Bp.oo) (173 %-30%) oML w/
(213-30) e

Now &w e L mLzJ"""“““"’" (0.16) = 6.0765

204 (T<0.005%)
T he.. 'T'+,’2—Tao - A - 2. - 59911
Troer — Teo CLoshmlL p 00163 -0.0765

<o l,qrzO.%7|(273-3o)+‘50=2-'72o3 K

ov- Thp=—0-7%C

(Note that with so little temperature drop, it is justifiable
to base h,. on a constant fin temperature.)

10.9 Find the percentages of z 2 4 0:¥m
leaving the bottom of the A - - =
box that reach sides 1, S
2, 3, 4, and the top. - . 3 m
2Lm
These percentages are equal to Fpgttom-19 Fh-2s Fp—3, Fh-g
and Fb—top'

Ffam F\a.lo.gl alc '-‘~;_zi€‘—2.§' ) b/c=f';‘-3.7s‘ Fb = 0,53 =

From ‘:\3.10.9, WL = =061, w/p =g =0ua

E rom Fla.lo.g, w/y = e-’ie-’=0.4— , wh=%=1s R =~ = 0095 t————

-
Check Yo vesult ZE 205342014 )2 (00%) = .00
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PrOBLEM 10.10  Consider Fig. (10.11). Find F1_2+4) and F(24+4)-1.

— —— -

i

3 l

‘ l
|

SoLuTION  First note that Fy_(24) = Fi_4. We use shape factor algebra to break this down.

Fy(123) = Fo1+ Fap + Fy3

=2F4 1 +Fy)
A123) Ay A
—F 4=2—Fi4+—F>
A, (123)-4 A, 1-4 A, 2-4
Divide through by 2A1/A4 and rearrange:
A(123) A
Fi4 = F a4——F
1-4 A (123)-4 oA, 2-4

F> 4 1s the subject of Problem 10.11, and the answer is F>.4 = 0.255. The other shape factor may
be found using Fig. 10.9, letting surface 4 be the / surface:

h/l =0.5/1.2=0.42

Fzsya =023 with
(s {w/l =0.6/12=0.5

Hence (1.2)(0.6) !
4= ———27(0.23) - =(0.255) = 0.218
-4 2(0.4)(0.6)( )=7(0255)
Then,
A 0.4)(0.6
Foay1 = Flay = —Fi = 006 )518) = 0.087

A, T (12)(05)
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10.11 Find Fo_, for the situation shown.

To solve this problem, we make use of Fig. 10.10. But notice
that the upright and horizontal surfaces are inverted here.
Fiest Fiud \22—4, - ARgaa, " E—f&-%; FatFia,

=254, 2%,

0.6m
W i 0.5 _
bu} &m. Flg.lO.lO@) h/e=35 =1 25 E  =o0.1LS

w/ﬂ =9o—’.%'=. .5 z-q’-
e.5 0.6 1
. =z —20.62 = =X = z
and t W[0=T520.625 w/p= T2 o.vsj E?-"ﬁ, 6.21
03w Thos Fp.4 =0.21 -0.165= 0.045

Thew Faou= de&,a,‘\,: Frea,* Foqt Fpq, =0.045 +016S 1 0045
=20.255 et—mr————
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10.12 Find Fy_o for the configuration shown.

g N Fed R
{

-2
la . “)
L" [ Sadt up 42_/ }
‘.4‘ 2 :‘\ ‘Flchcluu; ) ~
= F\Mcs +hus : - 31 Z:

A, Eq_3z=&(§1+ Rat Foy? Faa )
Ay £,

Therefore

Se RFR+v 2R 2T, 5,

Feovn Flg 10.9 we Yhom read (O

a

< T oA =143 se £
b

c.

l-azo's
= bL‘) = .93
2-%- z.sc,g so T, 20
L= 3; =143
TY LoVlows that: E_;yfm—;;zfi :_(_)_.93 -

292b
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10.13 Compute the net heat transfer 313°K 2939K
between the black cylinders y

- +

shown . ( &

First find Fy_». From Tahle 0.04
. wm

10.2 we read:

0.07 v —w) Diawn,
we vead:
0.03 - 0.63
- 1+——— - + Sm -
\ 2= '\‘r oon ) ) . 0.03 o.o‘i.l
0.04

"-‘_1: 0.03937

4 4
se: Q DYoo (T)“ _T:) = 7(0.0a)0.0937)5.61(3713 -2.93 )

W
= 383 ﬂo(—-\emﬁ-\’hi

10.14 Develop the string method for evaluating Fj_, between two-
dimensional surfaces.

Noting that areas are proportional to
the distances shown we write view fac—
tors for the two triangles, Ll—a—c

Li-b- d using case 4 in Table 10. 2

and

L,+C—-Qa _ ke -b
Thus . F1~C= -L-'—Z-I-l—' ond F\‘d = —2—:——

-2 V- F\-c\ p)

= -2 ki cearkrd-b (yy —(crd) _
1-2 ZL, 2\, - <\,

So it would be possible to obtain Fy_, by comparing the
difference between the lengths of the crossed strings, (a +
b), and the edge strings, (c + d), with 2L;. Hottel and
Sarofim [10.15] show that this will also work if Ly and Lo
are curved in complicated ways.

{Note: If the student is not clever in attacking this
problem, he can easily embark on some pretty complicated,
albeit correct, strategies.)
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10.15 Find Fy_g for the
configuration shown:

am [ 0.Lwm =w
Ou
We shall weike - /
F

1-s \—4,'5-‘:

V-4
n&v\.l
A\F\-A,S = AIZ!: F\zz-qf ~Ar.;‘:zs‘.:f‘s
ra
- - A,
A23F13-4Q A‘lF\-éi A
‘—-‘v—'%.) ._‘{1-_1 N Azl = l.
=N F A, 2 7-\T 2.
Qe AQ-23
vt e
=A =F -3 - -4
! =4S e ‘:!-4,5 Z_F\Z%—‘i? F.Z's-q,s 2F|.qx
L\ke wise
- AF
AIF;..A'_ '\‘12 szq. Al l—‘\l Zlﬁq-qi AZ,Q Fz¢-4,.
AagFioa
3 1 \
s F. =3F = -
° t=4 4 124-4 2 -4 4‘;(-4..
Fhﬂu\\\a \ F 3 F — 3 F- \ F
-5 heas Ti-a, Z'izzeas T 12345 4 1254 T g 2a-a.
] 6. — -
Wl L War Bhseen, wii= SR s 05 Ry, o T 02
§ riom
) - ‘iﬂ‘; =1 - 2-2 = = A
Fls. R LTI S 015 Fzz—%s 0.23
10.9 .
, , _._08._ “ =22 - | — - 0. 2Z2I8
@_)—J o ! o———'c’ 1.333 5. s Ti2y-4
3 7 = d—-Z o m = e__‘ = = 0. /25
° 0.2 * =3 cm"‘f
Thos:
3 2 \ -~
=Z0.65) -D.13 - = {0 )2 = 03Y —a
F\—s 2 ) 3 4(0.113\-;4(0) s) 0.0%

This result could easily suffer 10 or 20 % error from accum-—-
ulative inaccuracy of garaph reading.

Notice, too, that
without recognizing some tricks in manipulating F’s, one
could have a hard time solving this one.
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- O 25m | 3

10,16 Find F1_2 3,4 for the I - \

configuration shown. | 2
4
= Y=0.05;
Fi-l,%ﬁ» - Fl-z,s,q with wo ‘oloc_ka«é,o_ 5 Osm
by +he cyl. 'S T - -
— F\—S \t/ e
!
However: (equation (10.12)) T | J
< ¥ +* -
23,4 FL-:. Fl-'s F;-q. i

To %L.\_ Fl_s_ Lue use eq(n,@ in Table 10.2, with

Y = o.os;.) b= O.IlS—mJ C =0, 125,

a~d oz -0.125 (notice e imPor'Hm):- m—

a\usuau o‘ o miays Sljv’\

0. m famd of )
0.0 -1 O. - - -
e = 1%« 125 _ qurt o)l o 5504
0.25-(-0.125) 0.125 o 2s
Tl\Cn'. —
= = |-F = 0.6858 =

12,3, 4 \=S

(Some students will use Table 11.2 to calculate the un-
blocked values of Fy_ o = Fi-q4 = 0.293 and Fi-3 = 0.4142 and
only then discover that 0.293 + 0.293 + 0.414 = 1.)

10.17 A1l sides of the box, except {m -
1 and 2 are insulated. Find 8;_-, 1w g Z

YAF.,  EeE I N

B=e e i
\ b\ B, bZ_ MJ eos
2 300°C
UAF~s A ety /—Hus side 18
h hcld 0"’ swoc.
Wheve 3 Jdenctes
83‘- e'b the -(our | sulal-eol s:a\es .
3
- €
Frne egn. (13D qQ - €p, = e,
-2 - i’ 1—67_
e, >
ch, - ! — + “ €, A,
A e A
A\F\_3 AlF-g AIF|.L

bud €-\‘-‘\ So Y =0 Oad -F'nrw Fta- 10.9 , Case@ we read
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10.17 (continued)

for are =vle = L, F.=20.2 . It LoNows Had F_ =08
MAJ b‘b Sbm»«e*'ﬂs , -l:z_3=0.% . T—he“J Since A

ALY and
As = 4) 'Hw eq,uq.'hou 6wa_5 .
Q 5.@7((0)" (1737 - 5'13q)
-2 L . =62 = 2424 W
! - 0.2(1)

LN TN 2
10y 1063 i(0.2)

|N6¥-c_~_ One Couu Ia‘LUua¥\ue\3, u.arlsr-az 'an -H«ree m.Aa.\ Qﬁ_ua*zwg;

- -3 4
Node 4 @ gh = S106°(113N) ~ B2 | 567as¥13%) -8,
I

L
\
1(0.2) o
- % a
’ 5.¢lxlo (513') -B B, =5.L106%773° -2
Node Z \~ 6.2 ~ = 2 \ﬂ ¢ )+ Bz\ >
1(6.2) 10.2) I(o.%)
Neode 3¢ [3?_ omd ‘33 ave alreaolb speaLch. This e uation 'é
redundeaut.
solve for B, 21,038 Thee @ = ___rgﬁ, + B.__-.3"B‘ = 2494 W
7 Ba=13,16L 1e.2) (%)

10.18 Find @y_5 and Ting —y ]J)s for Problem 10.17 is €i,o. wall

is 0.6, and if 1t 15 1.

Note that, since node 3 is at an insulated wall,
there is no heat flow across the thermal resis—
tance’ (1 - €:3) /A3€3. Thus eb 3 = BB and (3 is
irrelevant to the determination of either Q). or
Tins.~wall+ With reference to the solution of
Proglem 11.17, we can immediately write, for
€ins.~wal] €qual to either 1.0 or 0.6:

18,166 o o
5e1()y® ~ 752K =473C~

al
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10.19 Find Fy_g within the insulated o

cylinder shown. (lOO“c, ‘/,(, o {_
- .CSm
First find Fy_o3 black) [
25- \*O."LSL )
R 2T 2R, 208, Xe1v 125 <1 0%, €701
a.2s msulated 7%

So F.z= Yle-1e 4l=ooss13

Furtnermore - A, = A= Zioc.os)" = 0.6019¢wmt , Bg=T(o.05)0.1) =0.0157m2

}
{-0.4
2 .3 9 0.00196(0.05513) =ouss o.1(0.0015¢ =4532
VT eh:m«,o (313) WA lh-k/\l\/\,-—_—c e, S'L‘IﬂO (273)
= 10921, = 31S.0
540.3 1

— = S40.
0.0019¢(1-06.655713) ae-3

63 = Qb3

no.:\a\ \oalamtea .

o = 10925 - B2 - 1097.S -~ Bs

-~
.e

21ss J40.>
2.: 35-8:_ B, - oS B,- B3
4592 oISy + 540.13y

3. o = By - \0‘515' R - By

S40.3 540.%
so we use Ythe Secowd Ywo of these Iree e%uakons:

Ba=5498.3+5,/2 é 37.06 — 0.1MEB,-0.052028, +(4.77- R, +5483
+8,/2 =0
20. B,2961.45 |, B,=e, =025

P

amd Tc_‘ﬁ\mdu- = '\Q/Qb /6 = 3C7.1°K = 24°C o
omd : B, -~ B ? =
Quey = 2-22, B3-B2 | 5 1408W —

21SsS "Saoc.x

10.20 Rework Example 10.3 if € pjiajg = 0.34. (Refer to the text
for the sketch and numbers.)

! -
4 Fs A ) 0.308(G0.4%)
Cb =B~ U(Z‘l?ﬂ'ao) h A
h k
= 26b,%28

=|b-8 4
e,:¢ (371
s

A AAAA A
s
65 \‘Es = 0.66
€Ay 0.0971(0.34)

= 20.0

|
: s = €63

F;" ;o.l‘(o.m)

\ \
= = .oz

AsFeni 0.0931(1-0.0¢549)

Bi=ey = orzen) - A

Swnce neither h ov i 15 adiabatic, we camw only write a nodal
Qner33 balance a node s
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10.20 (continued)

Bs=

o= Bg — 1093  Bs-—418
20 .oz
or
O = 0.14107Bg - 1782.25
Thew :
a _ Bu-By e, my-iz,ne
h-S - - 1s8
Ahﬁ\-s
Q - BB _ 2e6,927-413
h-i v
— 663
AL
Q.. = 8s-8c _ 12,08-418 _
s-t - o2
AsFe

Thus the net cooling of the shield must be Q¢
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ProBLEM 10.21 A smooth gray object of emittance €; and area A; and does not view itself
and sits in a much larger isothermal environment, A,. Suppose that the object is roughened by
making many small cavities covering its entire surface, without changing the radiative properties
of the material. The rough surface now has an area A, > A;. The projected area of the rough
surface is a smooth surface that just touches the peaks of the cavities, and it has the same area,
A;, as the original smooth surface. Starting with eqn. (10.23), show that the roughened surface
emits radiation to the surroundings as if the original smooth surface had become “blacker”. Further
show that the effective emittance after roughening is bounded between €; and 1. Hint: Because the
surroundings are effectively black, the value of A, does not affect the heat transfer: shrink A, until
it reaches the projected surface.

SOLUTION

The rough surface and surroundings form a two body exchange problem, with eqn. (10.23):

0 o(T{ — T}) o(T{ — TY) .

“e“'z_(l—sl) 1 (1—52 C(1-¢g 1
+ + +
614, AE, 24, £14r AE

where €, = 1 because the surrounding environment is effectively black. Because the surroundings
are effectively black, the value of A, does not affect the heat transfer. Thus, for purposes of analysis,
we can think of tightening the black surface 2 onto the roughened object so that it becomes the
projected surface, with area A, = A; < A,.

The projected surface, which is now surface 2, touches the top edge of each small cavity and
may be considered to be stretched flat above every cavity. Therefore, surface 2 does not see itself
and F5_, = 1. We can eliminate the view factor by setting A, F., = A,F_, = A, in eqn. (*):

o o(Ti - T3) o(Ti - T})
2T ey 1 [1—g) 1
ElAr " A_Z ElAr * A_l

where the second step follows since we know A, = A;. Rearranging, we have
Q A :
nety., = 1 A 1
1( ) +1

o(Ty = T,)) = A1 F,0(T - 1)

— =1
A \e

1
=F1-2

Comparing to the expression for a small gray object in a large isothermal environment, eqn. (10.30),
we see that the effective emissivity of the roughened surface is simply the transfer factor, 7 _,:

Ay 1
El,rough = }i—Z = ITZ(E - 1) +1
r

When A, > Ay, € royen = 1. When A, — Ay, € 1ouen — €1 In every case, € ;oon > €1 Thus, the
rough surface is effectively “blacker” than the original surface.

Comment 1: This analysis implicitly assumes that the radiosity of the cavities is uniform, and as
a result it is strictly valid only for spherical cavities (Donald K. Edwards, Radiation Heat Transfer

Notes, [10.3]). However, the general principle applies to other cavity shapes: rougher surfaces are
effectively blacker, with emissivity bounded between ¢; and 1.

Comment 2: We have also implicitly assumed the cavities to be large compared to the wave-
lengths of radiation.
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ProBLEM 10.22 A 30 ft by 40 ft house has a conventional sloping roof with a 30.3° pitch
and the peak running in the 40 ft direction. Calculate the temperature of the roof in 20°C still air
when the sun is overhead: (a) if the roof is made of wooden shingles; and (b) if it is commercial
aluminum sheet. The incident solar energy is 670 W/m?2, the effective sky temperature is 22°C, the
roofing materials are gray radiators, and the roof is very well insulated.

SOLUTION
The configuration is sketched in the figure. When the sun is directly overhead with an intensity
of I, = 670 W/m?2, the incident solar radiation per unit area of roof is

Qs = Ip cOs ¢ = 670 c0s(30.3°) = 579 W/m?
where ¢ = 30.3° is the roof pitch.

An energy balance on the roof must account for solar energy absorption, infrared radiation
exchange with the sky, natural convection to the still air, and heat transfer through the roof into the
house. Since the roof is said to be very well insulated, we will neglect heat transfer into the roof.
Then:

Aroofasolqsol = Aroof [SIRO—(T;(‘)of - T:{(y) + Enc(Troof - Tair)] (*)
The natural convection heat transfer coefficient can be calculated with eqn. (8.35) by putting g cos 6
into the Rayleigh number (as discussed on pgs. 432-434), where in this case 6 = 59.7°:
1+ 0.0107 Pr
1+ 0.01 Pr )
Let’s take air properties a convenient guessed value of Ty = 310 K (37°C) using Table A.6:

Nu; = 0.14 Rai“( (8.35)

Pr = 0.709, k = 0.02684 W/m-K, v = 1.659 X 10~> m?/s, o = 2.304 X 10~> m?/s
The length of the roof, L = (15 ft)(0.3048 m/ft) / c0os(30.3°) = 5.30 m. Then

gcosd BL3AT>1/3<1 +0.0107 Pr>

- k
e = (0'14)3( va 1+0.01 Pr

_ (1 4)0.02684 ((9.806) cos(59.7°)(1/310)(5.30)3AT>1/3 (1 + 0.0107(0.709))
— U530 (1.659 X 10-5)(2.304 x 10-5) 1 + 0.01(0.709)

=0.0007090 W/m2K —1839(AT)1/3 =1.000
= 1.304(AT)Y3® W/m2K
where AT = (Tyoor — Tair)-

We have two different roofing materials to consider, wood shingles and commercial aluminum
sheet. Both materials are gray, so that solar and infrared properties are the same: o, = €] = EIR-
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From Table 10.1, for commercial aluminum sheet we have a,,; = e = 0.09, and for wooden
shingles we take o, = g = 0.85.

We may rearrange eqn. (*), using the information we have gotten and putting temperatures in
kelvin:

EI’IC(TI‘OOf - Tair) = EIR[qsol - O-(Trtof - Tiy)]
1.304( Tyt — 293)43 = €p[579 — (5.67034 x 1078(T2 . — 295%)]

roof

This equation must be solved iteratively, guessing T, and substituting it into one side or the
other. Some experimentation will show you that a stable (convergent) iteration is obtained when
gr = 0.09 if the substitution is on the right-hand side, but that the substitution must be on the
left-hand side when gz = 0.85. We stop iterating when the difference is below 0.1 K, which is well
beyond the accuracy of the given information.

EIR 0.09 0.85

Tinitial guess [K] 310.0 330.0
306.7 346.7
308.0 324.7
307.2 333.0
307.7 344.6
Tconverged [K] 307.6 335.0

etc.
Tconverged [K] 3394
Summarizing:
35°C  for aluminum sheet Answer
roof = . —
66°C  for wooden shingles

Comment 1: The uncertainty in the radiative properties of both materials is significant (and
likewise for the heat transfer coefficient), and so the temperatures are clearly just approximate.

Comment 2: Our guessed film temperature is a bit high for the aluminum roof, but the properties
of air don’t change much over this range. We would gain little accuracy by adjusting the calculation
to a different film temperature.

Comment 3: A 7/12 roof pitch — 7 inches rise per 12 inches (one foot) of run — makes a 30.3°
angle.
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10.23 Calculate the heat transfer between O s +amless-s beel

the some shown and its base, by oY 300°C
radiation. ((5.5 = 0.4 and
e(:l.l = 0.15) @r.oggaro‘\'
- 2TRY - 2 - LeosC
A‘-Zu\’i , Az_-ﬂk , AZ}A\-\/L 0.2 m l
c \A] 4 r; ] r = \
= =" (g¢T, -R¥
Q \_e‘ ( l\ F’L A FZ-?. = ﬁ ? F;_| = i
So we need Bi. To %a;f' A-) AF = Azi-'z_ , B ATZ, o
w{'\x'Q: F‘ \
- 4 2= Z
g| - é/le +(‘—6|)islﬁ-l+sz E-z] E = |- -\
1= - = Z

BZ = CTZO.T: +(1- ez.) {82‘:2—2 *Bv Fé-l]

so!
B, [\-(\-e.)ﬁ_,}-Bz%F,_z(\—é,ﬂ: e\cﬂ,4
q
B8, 5. (- 14 B, - -e)F, )= €T,
os 0.’1 Bl - Ol%&z = Dsq (T.Tl4
-035B + LBy =ousg T}
0.40_—r4 -0,3%
1 . 1
Therefore s - \o.t&'c“'&’: N ‘ o.40T%- o.of-\i‘cr'\'?
\ -
0.1 ~ 0.3(0.35) o448
S0

0.A445S 0.445

L 0.4 - 4 4 a
Q“Z ZT\(O.\) oA 5.(""10 1(513) \,—‘_)_‘_:t _ 0.0 s &313) ]

Q,=2V.28W—=

300
Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



10.24 A hemispherical indentation in a smooth wrought iron plate
has a 0.008 m radius. How much heat radiates from the 400C
dent to the -209C surroundings?

 E =R, F Re

\-2 -0 ) \=-0s A'

——WN\—e AMM .
eb| |-G.-_‘ BI A\~ b"l_
e| 1 1 y-0o
So €p, - l 4
Q= \_be‘ "’L‘ - — eALcr(T T‘”l
G-l A] i A_lEl-a: ( C)—z +E ‘\Qo\— ‘ﬂow w\'\'\mv«} a.A‘-n-'\'
-8
= - 0.35(77,{6.00%7 )5.61(10)
0-035)15&555&& +03S
anoosr x [313%-253]
",

l-‘!s'\'\mes ‘\'\ae heu'\' 'gbu
that would eccur w;\‘\a vio A&‘\‘

S50 .

Q= 0.0325W —~=

10.25 A conical hole in & block of metal, for which € = 0.5, is
5 cm in diameter at the surface and 5 cm deep. By what
factor will the radiation from the area of the hole be
changed by the presence of the hole?

(This following solution breaks down if the cone is very deep
and slender since the the apex recieves little and we cannot
use the network analogy.)

From the solution to problem 10.24 we find that

QR witl bole _ A - ! 1.382
- - - . G —
R wo Wole (u-e.)%‘+ e, o.s%%)i +0.5

wﬁere the area of the cone is the product of its average
cxrcumfergnce, 2.5%, and its slant height, S/cos(tan~12,5/5)
= 43.9 cm*“.

301

Copyright 2023, John H. Lienhard, IV and John H. Lienhard, V



10.26 A single-pane window in a large room is 4 ft wide and 6 ft high.
The room is kept at 70°F but the pane is at 67°F owing to heat
loss to the colder outdoor air. Find: a) the heat transfer by
radiation to the window; b) the heat transfer by natural con-
vection to the window; and c) the fraction of heat transferred to

the window by radiation.

1
“ = = € =094
) MAow 4‘\: oo ! -+ Au)mdo,,\ ( \ _ \) W\AJQN
ew""!o"" A foowm erwm
=0
& 4
Q = Ao (Tndon -
MALUMAOW  roon wmdow window ( windlow l‘oom\

= 0.94(5.67)16 °(ax6)(0.3098) [ 29259 294,26 |

Q(‘qA room s window Q ed i dow +o roomzzo‘o EW=6343 ‘%’}E "

b) use eqn. (8.13a) with . 2:201/294. 26)(1.67)(6xo. 504%) )
) e (508 <10 5) (2.7 10) - L%6 S,

ond Pr=0.713:

W Obd+0.67 RaL [ = 492)9/16]-4/9 93.64

So — -
h = Nu k/L = 93.ca(0.02562)/c(0.3048) = 1.3

('\—\\IS s a ve lOW I\)

thew Q&M. = T\ A (m)- 1.31(6xa)(o. 3043)2(\.(;:)

w)
TC

= 488 W = (6.645> <

C> Z ﬁ »\ea:!‘:‘mms‘;( Lj r‘aA(a,"\vv\ = 22:0% .5 804= 30.4 7

20.0b+ 429
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10.27 Suppose the window-pane temperature is ynknown in_Problem
10.26. The outdoor air is at 409F and h = 62 W/m2~-9C on
the outside. It is night and the effective T, = 15°C.
Assume Fwindow-sky = 0.5 and the other surroundinags are at

4C')°C.‘ Evatuate Twindow and draw the analogous electric
circuit evaluating the thermal resistances. (The window is
opaque to infra-red radiation but it offers little resis-

tance to conduction so Twindow is approximately uniform.)

(Ros.+ @ )

] _
Calass Ay, et Yo kA, (T = WA, (T,-T.)+ e 3&-2’ IORS )

+ 63 Fw- 0. s,u‘hwh:""r:\

Let’s cut through a potentially terrible lot of trial and
error computation by noting that natural convection is not
going to be very important on the inside. (We take our cue
in this from the solution of Problem 10.26. Therefore
we’ll guess that h; is 3 W/m2-9C and correct this assumption

later if we must. Then divide that equation above by Ggo'Aw
and get (in S.I. units):

ua"'(. Conv,)‘n‘loors = (Qa,.w,*'amé.skj* QV&A

other ouHuor;
Sure.

4_« 300)° ~\. c200)? T 4 4
2 - — (2944 -V, )2 ——— [T.~21).L)+ 5(2T -27106- .
234.14-T, * 0946.0) @244-1) o.sq(s.u)( SN, 2631)

or 4
149600) =T + 339500~ 122 (10} T = T, - 5.397(10)?
P T 10,6100 Ty = 176, 2 (16)°

So\vma lo:) Pl and ermor we 9,@3“. T = 219.0°K

= 42S3°F
T\\ow C,Leak L‘na\-'\ Comv. Msmj eqgn. (8.13a) . (Dejrac\: Qre gtm n
soluhon f Prublen, 10.286.)

_ 294.4--219.0 2
QQL_ LOGG < 1 O? T("T“— = ‘3.']26('(3)

when INT= 101 °%C

So ¢ y a5y 0 5EY5 - 04444
Nu=ocgroral oG58 | < 1e2s
omd = 162,3(0.0250) /6 (6.30a%) = 2.27 W /mZ 2L

Gomg Ioac[t 'Hr\‘rau\ ‘\’L\e +ﬁal ﬁmap Error Soluhu»\ \oaseo( o
this velue g I w-egp/I' 4235S°F - - almost no c_\na«ny;,

So Tw :42-350F<
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10.27 (continued)

! [\y 5.z oL
e S'UMCQS,' - = - - - 0.0833— L
Neck calewlade resis R ad. - " T =
YM. w i
Q 305% 2 5.420 . teet oo, R = '
rajb\gj 12..71 —oomes YQAO.S. 740 TS5 Conv., hol\w ez meem
+h U ness - . - = C
the hithet neg,\ee\—egﬁ ?\PW’-“ —Tir':‘;—- = 0.001725 ,)%_ 2“"""» Q1975 | e
Rmd i~y 0009 Rr&do«s. 7 Z
‘ ———
wA V \I’\N\f_ T;._-_z-,—,‘ LOK
1 L/ 0
Rfune Tsk{-ZCZ.'l K
R‘“’“’( =07 = ZUD) Ra;nvo 2 0,007
AvA
Heat is basically Heat is short-
short-circuited circuited to the
to the window by outdoors by
radiation. convection.

So convection is irrelevant inside. Radiation is irrelevant
outside. And conduction through the glass causes no AT.

10.28 An effective low-temperature insulation is made by evacu-
ating the space between metal sheets. Calculate q between
150°K and 100°K for: (a) two sheets of highly polished

al., (b) three sheets of highly polished al., and (b) three
sheets of rolled sheet steel.

\ \
Tn all cases, K, = or T ————
FTE w5 UED z‘: (&) -
Case a.)cf_ = -5_--\"'—‘:' = 00,0204\ (wl\erc we use ea, ‘.‘Q“'“A(']‘e' 'I"«mf)
.04

q - T (T -TA) = oozo«\(;m)so%(nso oo’ ) = 0“70\”
115706)9

c9r. & 4
b) a:_ 11617 (l(D)’9 [.‘SOQ"TWM?;] =1.157(10) SITM\AJ\Q -100 }
Temddle =[iso* 106%)/2)7%= 13195 2L

W
q= 11510672 [150%- 1319571 = 0.235 5=

o \
c.) :l-x_zzi - < 0.49253 q_=0.4325 c'il'sl.ssq'- 10041'-‘— S.67 \,4/:/2-

\

0.66
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10.29 Three parallel black walls, lm wide, rorm an equilateral triangle.

One wall is held at 400°K, one at 300°K, and the third is insulated

Find Q W/m and the temperature of the third wall.
- = = = \
{/\Z,T,=30°% 3‘3 Sjmme\’rj jwe see F 35 57 %rhs® 2
=4’ ! \ .
T % @bl: gAY = \as52 W /mt

3
- - ’3 T
3’1'3_77. ey, T30 459,32 W/m
USm3 egfucc‘-w»\ (10.35) we a()d- .
= _4se,
eb‘ (e sz Q: _L‘!\_SZ |9‘5:-% - -]4-4 \N/M
(?.-n. v ;:)
\ -
K-E\—g— = —\".— =7 Avd 3&3«' eb3 we weite {50 the Node ®3 |
v Al\l
eb'} O= eblbeb.'i + e’bz"ebs

2. 2.
or 4
ey, = €p¥Bu,)/2 =255.1=0 15

Se T3 = 303K

10.30 Two lcm diameter rods run parallel with centers 4 cm apart. One is

at 1500°K and black. The other is unheated and € = 0.66. They are
both encircled by a cylindrical black radiation shield at 400°K.

Evaluate Q W/m and the temperature of the unheated rod.

T;= 1500°K

A From Table10.2 "¢ x=1+ 3z 4
G _
fem. diam A= 1-7_{:’-_'-5_"5‘“-"\; - 4] 20.0400
BT
o
07K F\—Z < \- F._,s: 0.960 = F3-2_
A=Ay =0.03u1 mY/m
1452 =B,
Usnna egruahw\ (10.35) we «}d
A - 281044 -1452 _ W
A)‘:?-L ﬂl‘i - 1 - 895’)?
= 33.16 !

\
79643316 + 331

W
0.0314:6(2957) = 29).4 P

Q=

MNow ot Ned et =-%9S 7 = BL-B' B;-8,
. — a. 33.1¢ M ;9‘
(‘Ue note Yhat €. does So B3= 12,8658 = G‘T;'
not ewnter the Prub\em.\

Ty = L20° K==
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10.31 A small diameter heater is centered in a large cylindrical
shield. Discuss the relative improtance of the emittance
of the shield during specular and diffuse radiation.

In this case Ajhgide/Poutside 15 very small so (see eqn.

(10.30) :
o i . ™y i
dibfuse e o Svecu\av - é-t" L

In the pure diffuse limit, €5 is irrelevant, while in the
pure specular limit, €; and €;are equally important.

10.32 Two, lm wide, commercial aluminum sheets are joined at a 120° angle

along one edge. The back (or 240°-angle)side is insulated. The

plates are both held at 120°C. The 20°C surroundings are distant.

What is the net radiant heat transfar from the left hand plate:

to the right hand side,and to the surroundings.
The business about heat roms e Lrom Veld & viahd 15 a red-herrin
We see at omee Fhat s mme"n:) feq_umes s 8 be zem. wWe m 3
—HAMCM Areat the ’J‘d-es A Covnmon \'uew\-cr) cq‘chwS—e Q frmm bo """,

and Thow Aivide 1k 193‘ +wo |

A Flt;z-s :Z'A»F\-s = Z(\‘E—Z_\:— 1132

3
NG ‘
® ®© 21-5m'E =043 b Tub10.2 72

E,r6,.=0.09 _
Then egn. (n.24) 3\v-cs-

= ?_’;Z.‘DQW{M e

1 |(5.07) \o's( [xzmznf— EZ°*7-1334)1

Q=Z 1—0.09 A \

gl * —

o0.con 1,732 <o

10.33 Two parallel discs of diameter equal to 0.5m are separated by an
infinite parallel plate, midway between them, with a 0.2m diameter

hole in it. What is the view factor between the two discs, if they are 0.6 m qur{:.

O

Fo= W ua =‘—<>(- 2 z\ Table 10.3
| ]_g 2T fiowele = 2 (N AR ) No. 3
g ""* R - T
\ _"O.Z.m\"" "i K: I o+ (_\:i: \}:Le_l ) = \4 ‘+(°‘u°'b)z:2,(c

s CDE (050
L= |

0.6m — \
F\—\n..-.\e: 2 (2‘("' JZ.C?'— 4(0.2./0.(,)1\

= 0.0A%S—-"
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10.34 An evacuated spherical cavity, 0.3 m in diameter in a zero-gravity
enviromment, is kept at 30C°C. Saturated steam at 1 atmosphere is
then placed in the cavity. a) What is the initial flux of radiant
heat transfer to the steam? b) Determine how long it will take for

Qonduction t©° become less than q (Correct for the rising

radiation’
steam temperature if it is necessary to do so.)

In s case: pl =2 0.3 s0 at 373°K éj-—:—(:“(:,_:o.?nsll.z\) =0.333

——

]9
513 -p.46 at 573°0 = -?ll)b‘,
§ophgReac At e (G3)'s onar

032 gC\ 2 \)

2 4
The Toer™ iw_j' 9r,3_u= 0.333C (573)' - 0.3240 (373) = 1CBOW/m" =

< AT
and from eqn. (5.54) grcmlz SAm - 0.0237(260)
'\)‘“"’fstmb T 2.0045° &

Thus Geong will cqual 1680 afbee £20.353 sec —

S\ﬂouu we Lmve Acwun*'eél 'Q"’“ ";'&Mfukj-uﬂ rise? 14“
would a//wr not | but Jets check :

Heat Catfa"b j s deam :fcp Vol = 0'597(2030)?(D‘|03
= 1713 w/ec
Q. t = 1630616s5)?) 0353 = 167,17 w

SQwAt = \\3&3 2t = 2067.10)w

180
- Qu 3(1611)
H‘catu.P 17.13 = .2:2_6_.

That’s a lot more AT than one might first expect, but it’s
still a small number. We can probably ignore it.
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10.35 Verify cases 1, 2, and 3 in Table 10.2 using the "'string method"

described in Problem 10.14.

* h
‘) — C.—é - \/\
l2><' g a=b= f—_-t.’wwi
L—w-.‘
F =larb) -(cad) -
" ket F‘n’: (A‘\-b;m“-\-é\ b H.(-tl:.-:)z - L‘;

L
2) vt

i a-=
- =0 F _= \-smoa/2
W/Z o\:ZaSSMEZS- -2 ——

_ brw) -0+ Tt _

3) h"-
L el e

w

10.36 Two long parallel heaters consist of 120° segments of 10 cm diameter
parallel cylinders, whose centers are 20 cm apart. The segments are
those nearest each other, symetrically placed on the line connecting

their centers. Find F1-2 using the ''string method" described in

Problem 10.14

_(a+b) - (c+d ) e sketc
F;-z‘ 2L, (see ?a:\-\,:\la b\:\i\"‘

PEE-CA

o =20 sm60°<~ b

4

cC = (2_0 S 60"5 YA
L, =

\
3 (- 10)

o (]
50! F_- - 40 Sin 60°% — 40 sia b0® « 31 60 - _é_. S\Y\(ooo(l— SMGOO)
-2 200/3 T

E .= 0.2216 —=e

-2
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10.37 Two long parallel strips of rolled steel sheet lie along sides of an
imaginary 1 m equilateral triangular cylinder. One piece is 1 m
wide and kept at 20°C. The other is (1/2) m wide, centered in an
adjacent leg, and kept at 400°C. The surroundings are distant and
they are insulated. Find Q. (You will need a shape factor. It can

be found using the method described in Problem 10.14.)

b‘=%'h ""=¢\5'"50°='\Ia"'— (1- deos6lP)? =0.21c§
;7\\ /\ d=zm L 0.866 L5
< ~ 49/64
\/,Y

¢ c=0.904 by gj,,,m;g

2 Thon: E o< (a+b) -lc+4) . 0.901440.15-6.90A-5.25
I o 1-2_ 2k, 2(0.5)

= &5 _
o) T 22
- \
Uusing G|= o.606 ’62 ,1 ad\mJ Hie Surrow.‘lmj“ 3
1-0.L . - 1-0.66 _
S 03 AT, 4- 8 TR
B, 2 o
€y ebr_

= A

vy
bu* Fz,\ - 2’2— \Z_"
[
b4 so F2-3 = |-F1_‘ = %
Then egqn. (10.35) gives:
ole13¥ - 293%)
Q= \ = 29227 W —
1.03 + l ‘ + 0.5\
+ S——
4;+—&_; 4
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10.38 Find the shape factor from the hot to the cold strip in Problem 11.37
using, not the string method, but Table 10.2. If your instructor asks

F
V-2

you to do so, camplete Problem 10.37 when you have F;_,.
(see details of dimensions in Problem 10.37 solution.)
Fo=ANF_ +h.

LWoy-2 L-2

LS
1%&%:«1
{
Z"“l’ N
Now: A
2 M
F, = 3ax\1-0.904 0.5
= £.56S
2(%) !
= 06,6972

#4 "
V-2
= Yari-o.201
2(%)

F =005 =

V-2

But from Table 10.2,
So

SO
i‘(oscsv‘) = T e+ ':r(o.e"nz)
CP!‘M '\’\Alf Pom" ’;MMMJJ Aeh’u\s‘ éj&‘oluhw Aare J)V&u 1M pm.l: 10.37.)

Prove that, as the figure becomes very long, the view factor for the

2nd case in Table 10. 3 reduces to that given for the 3rd case in

Zn thiscase H—>0 , W0 ljy = l,/uJ) So +he e?wu‘wm redaces 'S

11.39
Table 10.2.
-1 h -\ -
E_z"‘" ;‘-;(JGM o+ ;*"w ® -x’(-':‘—d—)lﬂ tal'er + A‘—‘(Q“\ + ol +oﬁ~\)>
TN 1) W ny, T - ) W _ b 13 -
=L (BT - T v o) = E(1+ B -yt )—-
This 15 given 1~ Table 10.2.
10.40 Show that F, , for the first case in Table 10.3 reduces to the ex-
pected result when plates 1 and 2 are extended to infinity.
)(Mﬁ“f""oo So
X % - y
Ty bl B e ikl D St X e
P § X Y '3
1 RN -0 — O
bu)c tawn a+—\-w- ;‘-—L

o 2] b
P
L wleL B Ca-nrtc_{’ &:r ‘\‘wo Mc\m‘f 'L“'Mj é)\q.LeS

S0
FF =
-2
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10.41 10.42 In problem 2.26 you were asked to neglect radiation in showing that

q was equal to 8227 W/m2 as the result of conduction alone. Discuss

the validity of the assumption, quantitatively.

-
-

4
Lnthis case we have: q’md .ED:_I ( Gooo+273) - [200*'313]4)
£-

uu‘Aere_ € =+the emittance oF l@_‘lﬁ P‘a“ﬁs . When ﬂCM\: 3-".4

=B, €=20,1066. This ts a reasmable value fo, POlLSLeA
metal , bub 1+ doesn't qiee a noghgtble value % Q.4
I‘: qma= 0‘\4‘«3\ (67, eh:a.a = 82271 Hhen & =0.00112 ., This
WOU\A be L\arJ "bacl'\levc. I‘\' wouu rc

uive QD\" R L ‘e_) a very
kt?«\j polished silver, q' P ]

10.42 A 100°C sphere with € = 0.86 is centered within a second sphere at

300°C with € = 0.47. The outer diameter is 0.3 m and the inner

diameter is 0.1 m. What is the radiant heat flux?

e‘bl Bi gl. ebz
—M—o—MN—e—AMN—*
-eal | 1-0.8G | ALYA (We get Fj_o from
Tlo3)t 641 AF, noyve Table 10.3, case 4.)
= 39589 e -

” t(0,05\¢

(0.3 (o—f—s

= 3.3

Then, using eqn. (10.35), we get:

e 2y d 4
13)" -
Q - C(s73)" - g(373) = 122.3 W
3.988 +31.83 + 5.122_
- Q. 122,33 | W
°}(-— A ~TET 432.¢ T
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PrOBLEM 10.43  Verity F_, for case 4 in Table 10.2. Hint: This can be done without integra-

tion.

SOLUTION

The configuration of three flat surfaces is shown in the figure. We can apply the summation and
reciprocity rules for view factors, eqns. (10.12) and (10.15), for the three surfaces; and then we can
do algebra to find F_,. Note that F_; = 0 for flat surfaces.

The rules lead to this set of relationships,
which provide 6 equations for 6 unknowns:

ho,+HRs=1 k;+E;=1,
Bi+h,=1
AR, = Ak, AR5 =A3k,,

Ayb 3 = A3,

We can eliminate F5_; and F_, with the last two
reciprocity relationships

B, =(Ay/A3)Bs3, By =(A1/A3)F ;3
and the fact that they sum to 1:

Fq+E, =(A1/A3)F ;3 + (Ay/A3)B 3 =1

=/

3 e

We may rearrange the second sum rule and
combine with the first reciprocity rule

B3=1-FK,=1-(A//A)F,

We can solve for F_; by substituting this result
into the previous equation

(A1/A3)F 3 + (A2/A3)[1 — (A1/A)F 5] =1
F 3 = (A3/A))
— (A3/A1)(A3/A3)[1 — (A1/AY)F ]
= (A3/A1) — (A2/AD) + B,

Finally, we may substitute the last relationship for F_; into the first sum rule
Fo+F3=1=F,+(A3/A) — (A2/A) + F,

Solving
Ko+ F,=1-(A3/A1)) + (A/A,)
1-— (A3/A1) + (Az/Al) Al +A2 —A3 Answer
F,= ; -a2
311-B
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PrOBLEM 10.44  Consider the approximation made in eqn. (10.30) for a small gray object in a
large isothermal enclosure. How small must A;/A, be in order to introduce less than 10% error in
J, if the small object has an emittance of €; = 0.5 and the enclosure is: a) commercial aluminum
sheet; b) rolled sheet steel; c) rough red brick; d) oxidized cast iron; or e) polished electrolytic
copper. Assume that both the object and its environment have temperatures in the range of 40 to
90°C.

SOLUTION
For an object 1 enclosed by a surface 2, eqn. (10.30) suggests an approximation to the transfer
factor defined in eqn. (10.27) when A;/A, < 1:

Equation (10.27) requires that object 1 does not see itself, so A;/A, must always be < 1. Further,
as €, — 1, the approximation of an effectively black surrounding is more accurate for any value of
A, /A,.

The problem asks us to find the value of A;/A, for which

1 A1 -1
— =+ (=-1
& €1 +A2(52 )]

for €; = 0.5 and various values of €,. We see that the first term inside the absolute value is always
larger than the second term, so we can drop the absolute value signs, substitute ¢, = 0.5 and

rearrange:
A (1 -1
0.5 — [2 + —1<— — 1)] <0.10
Ax\gy

A (1 -1
4 24+ —=(—-1
0 <[ +A2<52 )]

<0.10

and, with 0.4 = 2/5,

This gives us a bound on A;/A, as a function of €,:
1 A
T 4 )
(5-1) ™
)

Before charging ahead, let’s remember that A;/A, < 1. If we substitute A;/A, = 1 in eqn. (*)
and solve for ¢,, we find that

& <=
273

In other words, €, = 0.667 is the largest value for which we get a 10% error in the approximation.
For any larger value of ¢,, the error will be less than 10% even if Aj/A, — 1!/
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From here, we can make a table using the emissivities listed in Table 10.1. The area ratio must
be smaller than the value in the last column, which is calculated from eqn. (*) for e, < 0.667 and
is simply 1 for larger values of ¢,.

Case Material € A /A, <
a) commercial aluminum sheet 0.09 0.05
b) rolled sheet steel 0.66 0.97
c) rough red brick 0.93 1
d) oxidized cast iron 0.57-0.66 0.66-0.97
e) polished electrolytic copper 0.02 0.01
311-D
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PrROBLEM 10.45 Derive eqn. (10.45), starting with eqns. (10.39-10.41).
In older versions of AHTT, the first term in the right-hand side of eqn. (10.45) is incorrect.

SOLUTION

This problem is all algebra. The approach is to substitute eqn. (10.40) for B; into eqn. (10.41)
for H;. That expression can be rearranged as a matrix equation in terms of H; and 01}4. Likewise,
eqn. (10.40) can be substituted into eqn (10.39) to obtain an expression for Q. ; in terms of H; and
oT*. The two derived expressions can be combined to eliminate Hj, leaving a matrix equation for
Qqey,j in terms of oT;*.

Here we go. Equations (10.40) and (10.41) are:

B;=(1-¢)H;+¢0T (10.40)
n
H; =) BF, (10.41)
j=1

Elimination of B; from eqn. (10.41) gives
n
H; =Y [(1-¢)H; +50T*| Fy (10.41)

or, noting that Z}. H;6;j = ZjHjéij = H;,

n n
_ 4
2181 Fj(1 =) H; = ) F; 0T, )
Jj=1 Jj=1
Next we can write Qye; = Gnet;A; With eqn. (10.39) and substitute eqn. (10.40) for B;:
Queyy = Ai(B; — H;) = Ay(g; 0T} — &;Hy) (10.39)
so that 0
= oTA - 2
Hi=ot €A
Now eliminate H; in eqn. (*) using the above equation:
n Qnet "
18- Fiy(1 o) (o7 -7 = 3oty
" 4 4 " QnetJ
216 = Fj(1 - )] o7, Zgj Fijoly" = Z = Fy(l - E])]
" Qnetj n 4
26— Fi(1 = g)] — = 2 (8;j — Fiy) o
j:l .] J ] 1
Multiplying through by A; gives the solution, eqn. (10.45):
C Sij EJ) C
Z AiFij| Quey = D (A6 — AiFyj) 0T (10.45)
j=1 A j=1
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PrOBLEM 10.46 (a) Derive eqn. (10.31), which is for a single radiation shield between two
bodies. Include a sketch of the radiation network. (b) Repeat the calculation in the case when two
radiation shields lie between body 1 and body 2, the second just outside the first.

SOLUTION
a) The radiation network connects the black body emissive power of body 1, ep, = oT}, to

that of the shield, e, to that of body 2, ep, = oT,. The emissive powers are separated
from the radiosities by a surface resistance, and the radiosities are separated by a geometrical

resistance.
Ql’letl_z 4
4 — Bs,i ol Bs,o B, 4
e, = 9T} AN AN AN AN AN AN =65, = 9T
1-5y 1 1 1—¢g 1—¢g 1 1—-¢;,
€141 A F €sAs gsAs AsFg 84,

We assume that body 1 views only the inside of the radiation shield and that the outside
of the radiation shield views only body 2. Thus, F;_  =1and F, , = 1.

All net heat transfer leaving body 1 goes to body 2, so a single current, Qy, ,, net travels
through all resistors. To calculate this current, we simply divide the sum of the resistances
into the difference between the two given emissive powers. The result is eqn. (10.31):

o(T{ — TY)
1-—¢ 1 1-¢ 5 1—¢ 1
€14, " Ay * €4, " sy " Ay
—_—————

added by shield

Qnet, = (10.31)

b) The second radiation shield adds three more resistances: i) a geometrical resistance between
the first and second shield; ii) a surface resistance on the inside of the second shield; and
iii) a surface resistance on the outside of the second shield. The three resistances are simply
added in series between the original shield and body 2.

We may reasonably assume the inner shield sees only the outer shield (so that the view
factor is one), and that the outer shield sees only the body 2 (so that the view factor is also
one). Further, we assume that the emittances of shield 1 and shield 2 are the same. The heat
flow is reduced to:

2T 1o 1 1-g NN 1
+—+ + +—+ +—
§gA; Al A, €A, Ag €sAs, As,
added by shield 1 added by shield 2

Comment: Radiation shields are often made of reflective metals with low €, but even a
shield that is black adds additional geometrical resistance that can significantly lower the
radiation heat transfer.
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ProOBLEM 10.47 Use eqn. (10.32) to find the net heat transfer from between two specularly
reflecting bodies that are separated by a specularly reflecting radiation shield. Compare the result
to eqn. (10.31). Does specular reflection reduce the heat transfer?

SOLUTION

Equation (10.32) provides the radiation heat transfer between two specularly reflecting bodies,
one of which encloses (body 2) the other (body 1). We may be consider the added radiation shield
as a body which encloses body 1 and is enclosed by body 2. Then we can apply eqn. (10.32)
separately to body 1 and the shield and to the shield and body 2.

The network, using the transfer factors inside and outside the shield, is

4
oT;
&5, = 0T e—AAN—o—AAN—e 0y, = 0T}
1 1
Alf]—s ASfﬂ—Z

To calculate the heat transfer, we simply divide the sum of the two resistances into the difference
between the two given emissive powers and substitute eqn. (10.32) for F,_ and F ,:

o(T# — T
Qnetl,z = 1( : 23
+
Alﬁtl—s Asfs—Z
_ o(T — T})

- L(Lrl 1>+L<l+l 1)
Al & s As & &

For the purpose of comparing to eqn. (10.31), we can rearrange the denominator by adding and
subtracting one:

0 o(Ti - T})
net2 = 77 ] 1 1/1 1
—(==14+1+=——=-1)+—=(=-=-1+14+—=-1
A1<€1 * * Es >+As<€s * * €2 )

(1—51+ 1 +1—£S)+(1—ss+ 1 +1—£2>
ElAl Al EsAl gsAs As ngs

o(T{ — T})
1—¢ 1 1—82) <1—£S 1—¢ 1)
+—+ + + +—
( g4, A €245 €41 EAs A
The two areas in red, Ay and A;, are smaller than the corresponding areas in eqn. (10.31), which
were A, and Ag, respectively. That difference will tend to increase the two resistances and decrease
the heat fluxes.
. Answer
Specular reflection decreases the heat transfer. ~—«———
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PrOBLEM 10.48 Some values of the monochromatic absorption coefficient for liquid water,
as px; (cm™1), are listed in Table 10.6 [10.5]. For each wavelength, find the thickness of a layer
of water for which the monochromatic transmittance is 10%. On this basis, discuss the colors one
might see underwater and water’s infrared emittance.

A (um) px, (cm™)  Color
0.3 0.0067
0.4 0.00058 violet
0.5 0.00025 green
0.6 0.0023 orange
0.8 0.0196
1.0 0.363
2.0 69.1

2.6-10.0 > 100.

SOLUTION
We may use Beer’s Law in the form of eqn. (10.49)
73 = exp(—px;L) (10.49)
Setting 7; = 0.10 and solving for L:
Ing;  In(0.10)  2.303
- pry - pry pKg

We may add a column to the table for the value of L. We also convert L from cm to m for
convenience (dividing L by 100):

L=

A (um) ox; (cm™1) L (m) Color

0.3 0.0067 3.44
0.4 0.00058 39.71 violet
0.5 0.00025 92.1 green
0.6 0.0023 10.01 orange
0.8 0.0196 1.18
1.0 0.363 0.063
2.0 69.1 0.0003

2.6-10.0 > 100. < 0.0002

Colors in the green to violet range are transmitted the farthest. Reds and yellows are quickly
absorbed. So, underwater one would see mainly bluish-green light.

Infrared wavelengths (see Table 1.2) are absorbed in a few mm or less of water. As such, water’s
infrared absorptance will be close to one if the water has any significant depth. From Kirchhoff’s
law (Section 10.2), the infrared emittance on those wavelengths will also be close to one.
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PROBLEM 10.49 The sun has a diameter of 1.3914 X 10 km. The earth has a mean diameter
of 12,742 km and lies at a mean distance of 1.496 X 10® km from the center of the sun. (a) If
the earth is treated as a flat disk normal to the radius from sun to earth, determine the view factor
Funcarn- (b) Use this view factor and the measured solar irradiation of 1361 + 0.5 W/m? to show

that the effective black body temperature of the sun is 5772 K.
The physical data in this problem were updated in v5.20. Sources in Comment 4 below.

SOLUTION

a) The sun has a spherical field of view of which earth is a tiny part. We can treat earth as a
circular disk of diameter D, = 12,742 km sitting on the spherical surface, S, at a radius of
R = 1.496 x 108 km. The entire area of S is 477R?, and the fraction of that area occupied by
the earth is the view factor:

7TDe2/4 _ (12, 742)2 Answer

F. =4.534%x10710

sun—earth — A7 R2 - 16(1496 X 108)2

b) Satellite data show that the solar irradiation normal to the sun-earth axis is g;,q = 1361 W/m?
above the atmosphere. If we treat the sun as a spherical black body of diameter Dy, the heat
transfer from the sun fo the disk of earth’s diameter, is

qun to earth — (ﬂD.s; )F sun—eartho-Ts‘}m = qilrrad(ﬂ:De2 / 4)
(This heat transfer does not consider the [tiny] radiation from the earth to the sun.) Solving

for T,
T _ qirrad(ﬂDg/‘l') 14
s | zD26F
S sun—earth
B [ (1367)(12, 742)2(1000)? 1/a
N 4(1.3914 X 106)2(1000)2(5.670376 x 10—8)(4.534 x 10~10)
Answer

=5772K «——

Comment 1: Avoid the temptation to treat the sun and earth as two disks facing each other
(Table 10.3, item 3)! That approach understates the area viewed by the sun by a factor of two.
That calculation must also be done to very high precision, or by a binomial expansion, to obtain an
accurate, nonzero result from the equation in Table 10.3.

Comment 2: Part b) can be done without the view factor and earth’s radius by a simple energy
balance between the heat leaving the sun’s surface and the heat reaching the sphere of radius R:

(ﬂDz)o'Ts‘tm = irrad(47TR2)
s q

qirmd(47rR2)]” ‘o (1361)(4)(1.496 x 108)2
~1(1.3914 x 106)2(5.670376 X 10-8)

1/4
= 5772 K

Tsun = [ nDo

Comment 3: The total solar irradiance varies with seasons by +3.5%, as the distance between
earth and sun changes, and rises during the 11 year sun spot cycle (amounting to about 0.1%). A
mean annual value of 1367 W/m?K was in use ca. 1982. As satellite instrumentation has improved,
the value has been adjusted. Recent data are lower, 1361 £ 0.5 W/m?2K, and are referenced to a
“quiet sun” condition, with minimal sun spot activity. At the time of this writing, NASA had an
ongoing mission to measure solar irradiance: https://lasp.colorado.edu/home/tsis/data/tsi-data/.
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https://lasp.colorado.edu/home/tsis/data/tsi-data/

Comment 4: The International Astronomical Union provides the solar data used here: PrSa
et al., “Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3,”
Astronomical Journal 152:41, 2016, doi:10.3847/0004-6256/152/2/41. Mean earth radius is due
to the International Union of Geodesy and Geophysics (Geodetic Reference System, 1980).
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PrOBLEM 10.50 A long, section of cylindrical shell has a radius R, but it does not form a
complete circle. Instead, the cylindrical shell forms an arc spanning an angle 6 less than 180°.
Because the shell is curved, the inside surface of the shell (call this surface 1) views itself. Derive
an expression for the view factor F,_;, and evaluate F,_; for 6 = 30°.

SOLUTION

+

Let surface 2 be a flat surface that lies across the open portion of the arc (see figure). Then
F, , =0, so that F,_; = 1. Reciprocity gives

A
A1F1—2 = A2F2_1 = Az so that F1_2 = 14—2
1
Then ,
F,=1—-F,=1-2-2
1-1 1-2 Al

From geometry, the area of the curved surface 1 is A; = OR per unit length. The area per unit
length of the flat surface 2 is found by trigonometry, as A, = 2R sin(6/2). Hence:

2R sin(6/2)
F,=1-"222
1-1 eR
—1_ Sin(e/Z) Answer
- (6/2)
For 6 = 30° = 30(27/360) rad = 0.5236 rad,
sin(0.5236/2) Answer
FFi1=1—————7=1-0.9886 = 0.0114
1 (0.5236/2)
Comment: Note that A, — A; as 6 — 0 so +

that F;.; — 0 as 6 — 0. The case drawn has
@ = 100° and F;_; = 0.1222. Each point on A,
sees other points on Ay, but only at large angles
relative to the normal direction (see Fig. 10.4). e
The situation for & = 30° is sketched at right.
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PrROBLEM 10.51 Solve Problem 1.46, finding the Stefan-Boltzmann constant in terms of other
fundamental physical constants.

PrROBLEM 1.46 Integration of Planck’s law, eqn. (1.30) over all wavelengths leads to the
Stefan-Boltzmann law, eqn. (1.28). Perform this integration and determine the Stefan-Boltzmann
constant in terms of other fundamental physical constants. Hint: The integral can be written in
terms of Riemann’s zeta function, {(s), by using this beautiful relationship between the zeta and

gamma functions
0o t-S—].

I(s)=| —dt
() T(s) L 4
for s > 1. When s a positive integer, I'(s) = (s — 1)! is just a factorial. Further, several values of

¢(s) are known in terms of powers of 77 and can be looked up.

SOLUTION

eb(T) = J‘ e,u, da

0
(" 2rhc? di
), PBlexpac,/ksT2) — 1]

[ 2hv3

_ d
), Glexpv/kgT) — 11

2rkETH [ X3
= BZ j p dx
h3cs 0 ex —1

We are given

o tS—l
ST = [ e
0
For our case, s = 4 and I'(4) = 3! = 6. Hence:
2kET?
e(T) = —=5—{(4)3!
(0}
127k},
= @1
(0]
Zeta is a famous function, and the value at 4 has been established to be:
4
T
4) = —
(@) = o5
Hence:
2k )
ep(T) = —= | T*
o(T) (15h3c3
=ocT*

which gives us the Stefan-Boltzmann constant in terms of fundamental physical constants:
27 > k% Answer
o=
15h3c}
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PROBLEM 10.52: The fraction of blackbody radiation between wavelengths of 0 and

A is
1 A
f = O'T4 JO e;\‘b dA (11)
a) Work Problem 10.51.
b) Show that
00 3
FAT) = 2 Y ar (12)

7T4 /AT et —1
where c; is the second radiation constant, hc/kg, equal to 1438.8 nm-K.

¢) Use the software of your choice to plot f(AT) and check that your results match
Table 10.7.

SOLUTION. Following the solution to Problem 10.51:

1 (A
= A 1
f oT? |, expd (13)
1 (A 2mthc?
= dA 14
oT4 Jo A5 [exp(hc,/kgTA) — 1] (14)
1 (® 2mthyv?
0T4 Je,ia c3 [exp(hv/kgT) — 1] (15)
1 2 4’1"4 00 3
oT* h3cs Jearet—1
15 (® x3
= — a 17
T4 Je,ar X — 1 X a7
15 (© x° 15 (/AT x?
== " 1
m Jg eX —1 X ™4 Jo eX—ldx (18)
15 (/AT x?
—1—ﬁ0 ex_ldx (19)

The numerical integration can be done in various ways, depending on the software avail-
able. (On a sophisticated level, the last integral can be written in terms of the Debye
function which is available in the Gnu Scientific Library.) This equation is plotted in
Fig. 1.

PROBLEM 10.53: Read Problem 10.52. Then find the central range of wavelengths that
includes 80% of the energy emitted by blackbodies at room temperature (300 K) and at
the solar temperature (5772 K).

SOLUTION. From Table 10.7, f = 0.10 at AT = 2195 pm-K and f = 0.90 at AT = 9376
nm-K. Dividing by the absolute temperatures gives:

T [KT Agx [mm] Agg [mm]

300 7.317 31.25
5772  0.380 1.62
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FIGURE 1. The radiation fractional function

PROBLEM 10.54: Read Problem 10.52. A crystalline silicon solar cell can convert pho-
tons to conducting electrons if the photons have a wavelength less than Ap,ng = 1.11
nm, the bandgap wavelength. Longer wavelengths do not produce an electric current,
but simply get absorbed and heat the silicon. For a solar cell at 320 K, make a rough
estimate of the fraction of solar radiation on wavelengths below the bandgap? Why is
this important?

SOLUTION. The relevant temperature is that of the sun, 5772 K, not that of the solar
cell. We approximate the sun as a blackbody at 5777 K, ignoring atmospheric absorption
bands.

AbandT = (1.11)(5772) pm - K = 6407 pm - K
Referring to Table 10.7, a bitless than 80% of solar energy is on these shorter wavelengths
(with a more exact table, 77%). This is significant because the solar cell can convert less
than 80% of the solar energy to electricity; additional considerations lower the theoretical
efficiency still further, to less than 50%.
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PrROBLEM 10.55 Two stainless steel blocks have surface roughness of about 10 um and € =~ 0.5.
They are brought into contact, and their interface is near 300 K. Ignore the points of direct contact
and make a rough estimate of the conductance across the air-filled gaps, approximating them as two
flat plates. How important is thermal radiation? Compare your result with Table 2.1 and comment
on the relative importance of the direct contact that we ignored.

SoLUTION The gaps are very thin, so little circulation will occur in the air. Heat transfer
through the air will be by conduction. Radiation and conduction act in parallel across the gap.
The temperature difference across the gap will likely be small, so we may use a radiation thermal
resistance. The conductance is the reciprocal of the thermal resistance, per unit area, so hgy, =
hcond + hrad-

Letting the gap width be 6 = 10 um and taking k,j; = 0.0264 W/m-K, we can estimate

k 0.0264

g = m = 2, 640 W/mzK

heond =

With eqns. (2.29) and (10.25):

-1 -1
11 2 1
_n = _— _— 1 = _— 1 = —
i (81 T ) (0.5 ) 3
hrag = 40T Fi_y = 4(5.67 x 1078)(300)3(0.3333) = 2.041 W/m’K
Then
Rgap = hcond + trad = 2640 +2.041 = 2,642 W/m?K

This conductance is on the lower end of the range of given in Table 2.1. Conduction through con-
tacting points will add significantly to the heat transfer, although it will be highly multidimensional
and not easily calculated. Thermal radiation, however, is negligible.
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PrROBLEM 10.56 A 0.8 m long cylindrical combustion chamber is 0.2 m in diameter. The
hot gases within it are at a temperature of 1200°C and a pressure of 1 atm, and the absorbing
components consist of 12% by volume of CO, and 18% H,0O. Determine how much cooling
is needed to hold the walls at 730°C if they are black. Hints: For this small optical depth, the
emissivities of CO, and H,O may be added without correction. The gas mixture is approximately
ideal, with vol% of a = mole fraction, x, = p,/p.

SoLuTiON  The geometrical mean beam length, L, for this cylindrical enclosure may be
calculated from eqn. (10.58):
4 (volume of gas) _ (4)(0.8)7(0.2/2)?

= = =0.178m = 17.8
°™ boundary area that is irradiated ~ 7(0.2)(0.8) + 27(0.2/2)? m cm

(10.58)

(If we had neglected end effects, from Table 10.4, Ly = D = 20 cm.)

According to the hint, with a total pressure of 1 atm, the partial pressure of CO, is 0.12 atm and
the partial pressure of H,O is 0.18 atm.

We can start by finding the gas emissivities. We need the temperatures in kelvin: Ty = 1200 +
273 = 1473 K and T, = 730 + 273 = 1003 K. For CO,,

PoL = (0.12 atm)(1.013 bar/atm)(17.8 cm) = 2.16 bar-cm

At 1473 K, Fig. 10.22 gives €® = 0.052. Figure 10.24 gives the pressure correction factor as
C = 0.995 with Pg = 1.03 bar, so that

£co, = Ce® = 0.052
For H,0,
poL = (0.18)(1.013)(17.8) = 3.25 bar-cm
At 1003 K, Fig. 10.23 gives €° = 0.070. Figure 10.25 gives C = 1.15 with Pg = 1.90 bar, so that

€m0 = Ce® = 0.081

As suggested in the hints, we add the two emissivities to obtain £, = 0.133.

The absorptivity is computed using eqn. (10.57). This calculation requires us to find &g using
different temperatures and partial pressures. We add the emissivities for the two gases, then compute
the absorptivity of the mixture.

/2
T, Ty \'
Ay = €| PaL =L, D, T, )x (—g) (10.57)
g g(pa Tg P {lw T,
The adjusted pressure-paths are:

Lﬂ _ 2.16(1003)/(1473) = 1.47 bar-cm  for CO,

“" T,  |3.25(1003)/(1473) = 2.21 bar-cm  for H,O

The emissivities from Figs. 10.22-10.24 are:

£(1.47 bar-cm, 1 atm, 1003 K) = Ce® = (0.99)(0.062) = 0.061 for CO,
(2.21 bar-cm, 1 atm, 1003 K) = Ce® = (1.15)(0.056) = 0.064 for H,O
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wherein Py takes the same values as before. Adding these and using eqn. (10.57) we have

1/2
g 1473
=g,| = = (0.061 + 0.064) 4/ ——= = 0.151
i Eg( Tw) (0.061 +0.064)/ 1553
=0.125
Finally, we are ready to compute the heat transfer from the gas to the wall, which is the cooling

load:
Quet,.,, = Aw(sgcTét - ocgoTj;)

= [71(0.2)(0.8) + 27(0.2/2)%](5.67034 x 10—8)[(0.133)(1473)4 - (0.151)(1003)4]

Answer
=15kW «————
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